
Flexpoint: Predictive Numerics for Deep Learning
(Invited Paper)

Valentina Popescu, Marcel Nassar, Xin Wang, Evren Tumer, Tristan Webb

Artificial Intelligence Products Group, Intel Corporation

Abstract—Deep learning has been undergoing rapid
growth in recent years thanks to its state-of-the-art per-
formance across a wide range of real-world applications.
Traditionally neural networks were trained in IEEE-754
binary64 or binary32 format, a common practice in
general scientific computing. However, the unique com-
putational requirements of deep neural network training
workloads allow for much more efficient and inexpen-
sive alternatives, unleashing a new wave of numerical
innovations powering specialized computing hardware.
We previously presented Flexpoint, a blocked fixed-point
data type combined with a novel predictive exponent
management algorithm designed to support training of
deep networks without modifications, aiming at a seam-
less replacement of the binary32 widely in practice
today. We showed that Flexpoint with 16-bit mantissa and
5-bit shared exponent (flex16+5) achieved numerical
parity to binary32 in training a number of convolu-
tional neural networks. In the current paper we review
the continuing trend of predictive numerics enhancing
deep neural network training in specialized computing
devices such as the Intel R©NervanaTM Neural Network
Processor.
Index Terms—Flexpoint, Deep Learning, Neural Net-
works

1. Introduction
The rapidly growing computational demand by

deep learning has led to an increased interest in spe-
cialized hardware architectures optimized for train-
ing and inference of deep neural networks with in-
creasing performance at decreasing cost. Today’s deep
learning workloads are commonly processed on CPU
and/or GPU architectures using IEEE-754 binary32
or binary16 floating-point precision. However, nu-
merous recent studies suggest that substantial im-
provements in hardware footprint, power consumption,
speed, and memory requirements could be obtained
with more efficient data formats.

The data format design depends on the target work-
load: (i) for inference workloads, a network, typically
trained in binary32, is quantized to closely approxi-
mate various metrics produced by the higher-precision

network; (ii) training workloads, on the other hand,
present additional numerical challenges as the network
tensors dynamically shift between different operational
ranges as training progresses.

To meet these challenges, we introduced in [1]
Flexpoint, a low-precision numerical format specially
designed for deep learning applications, that combines
the advantages of fixed-point and floating-point arith-
metic. It uses a common exponent for all values in
an array, thereby reducing computational and memory
requirements in comparison with competing methods.
Flexpoint’s novelty lies in its predictive exponent man-
agement algorithm designed to overcome the dynamic
range limitations introduced by the blocked feature of
the data format. We showed that Flexpoint faithfully
maintains algorithmic parity with binary32 in training
a wide range of deep network topologies, while, at
the same time, substantially reducing consumption of
computational resources. Thus, Flexpoint may be a
powerful numerical solution for specialized hardware
optimized for field deployment of training already
existing deep learning models.

2. Deep Learning
This section provides an overview of deep learning,

we refer the interested reader to [2] for a more detailed
treatment. Deep learning is a branch of machine learn-
ing inspired by the human brain that employs models
called neural networks. These are organized in layers,
i.e. the bottom layer receives input data, while the top
layer produces, after learning, a desired output that
realizes a meaningful inference of the input data.

These models typically contain millions of param-
eters and are usually trained iteratively using stochas-
tic gradient descent optimization techniques over vast
amounts of data. The gradient is computed using back-
propagation, an efficient algorithm that produces the
derivative with respect to each parameter. The data is
fed to the network in batches (subsets that fit into
device memory), in the form of tensors, i.e. mul-
tidimensional arrays that admit multilinear algebraic
operations. After each batch is forward propagated
through the entire network resulting in a loss function
value (predicted output), gradients (Jacobian tensors



of the loss) are computed and backpropagated through
the network. Finally, parameter updates are applied for
each layer to complete the training of the batch.

A full pass over the entire training data set com-
prises an epoch. Networks can require hundreds of
epochs before parameter updates become negligible,
which is referred to as “convergence”. While a typical
model may combine many different types of layers, the
use of convolutional layers has been a key innovation
which constitutes the major computational workload
of modern deep networks.

From a numerical perspective, we identify some
common trends and issues unique to deep learning:

i Activations can be normalized to have a narrow
range of values across the entire set.

ii Layer parameters change slowly in terms of order
of magnitude during the course of training, thereby
suggesting that low-precision formats can encode
values effectively (see Fig.2).

iii A common problem during training is that the
gradients may become very small comparing to
the parameter’s values, thus their value being dis-
carded during update as rounding error.

iv Many of the tensor operations have a large number
of multiplyaccumulate (MAC) operations, which
may lead to overflows during accumulation.
With hardware implementations in mind, some

studies have proposed alternatives for the underlying
arithmetic formats used for deep learning. Data for-
mats designed for inference achieved dramatic reduc-
tions in bit width from 32-bit all the way down to one
bit (i.e. binary networks [3]), and has already made its
way into production hardware such as Googles tensor
processing unit (TPU) [4]. In contrast, numerical data
formats for training are less mature, divided between
mixed-precision and homogeneous data formats.

Mixed data formats typically combine binary32
with a lower precision format either to accelerate the
forward pass [5] and/or to perform higher-precision
updates on the parameters [6]. While this approach
leads to impressive results such as 6-bit gradients [6],
it is typically model-specific and requires hardware to
support both the high and low precision formats. Ho-
mogeneous data formats, on the other hand, represent
all tensors in the same format, making them attractive
from the design perspective as it yields specialized,
efficient hardware. Dynamic fixed-point (DFXP) is an
example of a homogeneous format in which all values
in a tensor share an exponent, which is adaptively
updated based on levels of observed overflows [7].
However, DFXP’s passive reaction to overflows is
insufficient to train modern neural nets [7].

3. Flexpoint
We propose an adaptive low precision format

called Flexpoint, formally defined in Def. 3.1.

Definition 3.1. Consider a tensor T with k elements.
Flexpoint is its representation as two main compo-
nents:

(i) mi, with i ∈ {1, . . . , k}, is each element’s
mantissa, stored as an N -bit integer value in
two’s complement form;

(ii) e is an M -bit unsigned exponent, shared across
all elements of T , that is dynamically man-
aged.

We denote this as flexN+M and each element’s value
can be computed as: Ti = mi ×κ, where κ = 2−e is
the scale.

Fig. 1 shows an illustration of a flex16+5 tensor
(i.e., 16-bit mantissa and 5-bit exponent) compared
to binary32 and binary16 tensors. The floating-
point structure of size l linked to the Flexpoint tensor
is the statistics buffer corresponding to the exponent
management algorithm (see Section 3.1).

Figure 1. Tensor representations using (a) binary32 and (b)
binary16 vs. (c) flex16+5 formats.

In Fig. 2 one can observe the trends in tensor’s
value range, pointed out in the previous section. It
shows that a flex16+5 format is robust enough for
encoding tensor variance in its mantissa bits.

Figure 2. Numerical values for (a) weights, (b) activations and
(c) weight updates, during first (blue) and last (purple) epoch of
training a residual neural network using binary32. The horizontal
axis covers the entire range of values that can be represented in
flex16+5, and the horizontal bars indicate the dynamic range
covered by the 16-bit mantissa.



While significantly improving precision compared
to binary16, when compared to binary32, flex16+5
reduces not only memory and bandwidth requirements
in hardware, but also reduces power and area re-
quirements thanks to simplified fixed-point adders and
multipliers. However, these advantages come at the
cost of added complexity on the exponent management
and dynamic range limitations imposed by sharing
one exponent. For hardware-implemented Flexpoint
representation, one needs to determine the output ex-
ponent before the operation is actually performed,
otherwise the intermediate result needs to be stored in
high-precision, before reading the new exponent and
quantizing the result, which would negate much of the
potential savings in hardware.

3.1. Autoflex algorithm
Our exponent management algorithm (Autoflex)

was specially designed for iterative optimizations
where tensor operations are performed repeatedly and
outputs are stored in hardware buffers. It aims to pre-
dict an optimal exponent for the output of each tensor
operation based on tensor-wide statistics gathered from
values computed in previous iterations.

Autoflex tracks the maximum absolute value of
every tensor using a dequeue to store a bounded history
of these values. Based on a statistical model, it is then
possible to estimate a trend in the stored values to
anticipate an overflow or a decrease in tensor values
and adjust the exponent accordingly.

Throughout this section we use the notations in-
troduced in Definition 3.1, to which we add:

• Γ as the maximum absolute mantissa value of
T , and

• φ = Γκ its floating-point representation.

At the beginning of training the statistics queue
is empty, so we use a simple trial-and-error scheme
described in Algorithm 1 to initialize the exponents.
We perform each operation in a loop: we inspect the
output value of Γ for overflows or unused mantissa
bits, and repeat until the target exponent is found. This
mode of operation, called “Init Mode”, is employed
until the statistics queue is full at which point the
tensor is considered to be initialized.

Once a tensor has been initialized, Autoflex is
switched to ”Adjust Mode“ (Algorithm 2) which at-
tempts to predict the optimal exponent based on the
collected statistics. We maintain a fixed length de-
queue, f , of the maximum floating-point values en-
countered in the previous l iterations, and predict the
expected maximum value for the next iteration based
on the maximum and standard deviation of values
stored in the dequeue. If an overflow is encountered,
the stats buffer is reset and the exponent is increased
by one additional bit.

Algorithm 1 Autoflex Init Mode. Scales are initialized
by repeatedly performing the operation and increasing or
decreasing the exponent in the case of overflows or mantissa
underutilization, repectively.

1: initialized← False
2: κ = 1
3: while not initialized do
4: Γ← returned by kernel call
5: if Γ ≥ 2N−1 − 1 then
6: . overflow: increase scale κ
7: κ ← κ × 2b

N−1
2 c

8: else if Γ < 2N−2 then
9: . underutilized mantissa

10: κ ← κ × 2dlog2 max (Γ,1)e−(N−2)

11: . jump directly to target exponent
12: if Γ > 2b

N−1
2 c−2 then

13: . ensure enough bits for reliable jump
14: initialized← True
15: else
16: . scale κ is correct
17: initialized← True

Algorithm 2 Autoflex Adjust Mode. The hyperparameters
are: α = 2 - the multiplicative headroom factor, β = 3
- number of standard deviations, and γ = 100 - additive
constant. Statistics are computed over a moving window of
length l. Returns expected maximum κ for the next iteration.

1: f ← stats dequeue of length l
2: Γ← returned by kernel call
3: κ ← previous scale value κ
4: if Γ ≥ 2N−1 − 1 then
5: . overflow: double scale and clear stats
6: clear f
7: Γ← 2Γ
8: f ← [f ,Γκ] . extend dequeue
9: χ← α [max(f) + βstd(f) + γκ]

10: . predicted maximum value for next iteration
11: κ ← 2dlog2 χe−N+1

12: . nearest power of two

For memory efficiency, buffers that are used for in-
termediate results can be reused since statistics buffers
are stored separately for each computation. This allows
for the allocated memory to be reused without disrupt-
ing the exponent management.

3.2. Autoflex Example
The following example is taken from the initial

Flexpoint paper [1] and it illustrates the Autoflex algo-
rithm by training a small multilayer perceptron (MLP)
with 2-layers for 400 iterations on the classic CIFAR-
10 dataset.

During training, κ and Γ values are stored at each
iteration, as shown in Fig. 3.2. The weight tensor,
illustrated in Fig. 3.2(a), is highly stable as it is only



Figure 3. Evolution of different tensors during training with corresponding mantissa and exponent values. The black arrow indicates how
scale changes are synchronized with crossings of the exponent boundary. In each case Autoflex estimate (green line) crosses the exponent
boundary (gray horizontal line) before the actual data (red) does, which means that exponent changes are predicted before an overflow occurs.

updated with small gradient steps. In the two upper
plots we can observe that Γ slowly approaches its
maximum value of 214, at which point the κ value is
updated, and Γ drops by one bit. The last plot shows
the corresponding floating-point representation of the
statistics computed from φ, which is used to perform
the exponent prediction. Using a sliding window of
` = 16 values, the predicted maximum is computed,
and used to set the exponent for the next iteration.
In this first case, the prediction crosses the exponent
boundary of 23 about 20 iterations before the value
itself does, safely preventing an overflow.

Tensors with more variation across epochs are
shown in Fig. 3.2(b) - activations and Fig. 3.2(c) -
updates, respectively. The standard deviation across it-
erations is higher, therefore the algorithm leaves about
half a bit or one bit of headroom. Even as the tensor
fluctuates in magnitude by more than a factor of two,
the maximum absolute value of the mantissa Γ is
safely prevented from overflowing.

Even though the goal of Autoflex is to keep the
maximum absolute mantissa values at the top of the
dynamic range without overflowing, its flexibility does
not guarantee that this is always the case. For instance,
when looking at the updates tensor, Γ reaches 3 bits
below the cutoff, which means that the 3 leading bits
are zero and we use only 13 of the 16 mantissa bits
for representing the data.

4. Conclusions
In the previous work [1] we demonstrated that a

Flexpoint data format, flex16+5, achieved numeri-
cal performance on par with binary32 in training a
number of deep convolutional networks without alter-
ing model design and topology.

Some of the advantages observed include: no re-
tuning of hyperparameters is necessary; the training
procedure remains exactly the same, eliminating the
need of intermediate high-precision representations

(except for the intermediate higher precision accumu-
lation needed for multipliers and adders); networks
trained in floating-point formats can be readily de-
ployed in Flexpoint hardware for inference. Despite the
added complexity of exponent management, Autoflex
algorithm manages all Flexpoint tensors in the same
way, an encapsulated mechanism hidden from the user.

Our discovery supports Flexpoint’s potential in
realizing gains in efficiency and performance of future
hardware architectures specialized for deep neural net-
work training. Our work laid the foundation for future
research on remaining questions: (i) potentials and
implications of using other data formats in the Flex-
point family, namely flexN+M for certain (N,M),
(ii) numerical limitations and proper error analysis on
the results, (iii) whether/how the Autoflex algorithm
could be improved for better performance or less com-
putation, etc.

Future research into the numerical properties of
data formats will lead to future efficiency in machine
learning, and this can be just as important to the field
as new models and algorithms.

References

[1] U. Köster et al., “Flexpoint: An adaptive numerical format for
efficient training of deep neural networks,” NIPS 2017, pp.
1742–1752.

[2] I. Goodfellow et al., Deep Learning. MIT Press, 2016.
[3] K. Minje and S. Paris, “Bitwise neural networks,” arXiv preprint

arXiv:1601.06071, 2016.
[4] N. P. Jouppi et al., “In-datacenter performance analysis of a

tensor processing unit,” arXiv preprint arXiv:1704.04760, 2017.
[5] M. Courbariaux et al., “Binarized neural networks: Training

deep neural networks with weights and activations constrained
to +1 or -1,” arXiv preprint arXiv:1602.02830, 2016.

[6] S. Zhou et al., “DoReFa-Net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients,” arXiv
preprint arXiv:1606.06160, 2016.

[7] M. Courbariaux et al., “Training deep neural networks with low
precision multiplications,” in ICLR 2014.


