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Abstract—Algorithms for extending arithmetic precision
through compensated summation or arithmetics like double-
double rely on operations commonly called twoSum and twoProd-
uct. The current draft of the IEEE 754 standard specifies these
operations under the names augmentedAddition and augment-
edMultiplication. These operations were included after three
decades of experience because of a motivating new use: bitwise
reproducible arithmetic. Standardizing the operations provides
a hardware acceleration target that can provide at least a
33% speed improvements in reproducible dot product, placing
reproducible dot product almost within a factor of two of
common dot product. This paper provides history and motivation
for standardizing these operations. We also define the operations,
explain the rationale for all the specific choices, and provide
parameterized test cases for new boundary behaviors.

I. INTRODUCTION AND MOTIVATION

The IEEE 754 Standards Committee for Floating Point
Arithmetic is considering adding three new recommended
binary floating point operations in the upcoming 2018 version
of the standard. The goal of this paper is to describe these
operations, and why they are being considered now, when very
similar instructions were considered but not included in the
last 2008 standard[1]. The first new operation is a variation of
the well-known twoSum[2] operation, which takes two floating
point summands x and y, and returns both their rounded sum
h = round(x+ y), and the exact error t = x+ y−h (exception
handling is discussed later). The letters h and t are chosen to
stand for head (the leading bits of the sum) and tail (the trailing
bits). For the error t to be exactly representable, the initial
rounding must be to-nearest, with any tie-breaking rule and
with gradual underflow. The many existing and widely used
software implementations of this operation, whose goals are to
simulate higher precision arithmetic efficiently, have used the
standard tie-breaking rule (to nearest even), including double-
double[3], quad-double[4] and compensated summation[5].

The reason for considering this operation again (as well
as two analogous operations implementing subtraction and
multiplication of x and y to get h), is that using a different tie-
breaking rule can both preserve and accelerate all the existing
uses of this operation as well as one new one: reproducible
summation. Reproducible summation means getting bitwise
identical sums, no matter the order in which summands appear.
If ties are broken in the new operation using the right rule, then
one can perform reproducible summation very efficiently by
doing one read-only pass over the summands in any order. The

sum is represented by a reproducible accumulator consisting of
just a few floating point numbers (six floating point numbers are
recommended to attain the usual precision or better, in double).
Reproducible summation is of particular interest, for correctness
and debugging reasons, on common parallel platforms where
summations are not performed in a deterministic (reproducible)
order. Application studies for exascale computing identify
reproducibility as necessary for important applications[6].

After much consideration and input from various users, the
committee chose the tie-breaking rule of rounding h toward
zero (roundTiesToZero in the draft standard’s parlance). This
is not the only rule that would work, but it is the simplest to
explain and implement. The actual reproducible summation
algorithm requires quite a long proof[7], so here we will just
summarize the necessary results from this work.

The new operations are named augmentedAddition, aug-
mentedSubtraction, and augmentedMultiplication to highlight
differences from existing implementations of twoSum and the
analogous routines. Section II presents some of the history
behind these operations along with uses in extending arithmetic
precision and implementing reproducible summation. The
operations are defined from a high level in Section III. We
rephrase the text in the draft standard to avoid standardese. Note
that these operations are recommended only for binary floating-
point; requirements for decimal are not yet known. Reasons
for the specific choices about rounding direction, exceptional
behavior, and treatment of signed zeros are in Section IV.
Potential performance improvements from implementing the
augmented arithmetic operations as two hardware instructions
range from 33% faster reproducible dot products to 2× faster
double-double matrix multiplication, shown in Section V. New
operations need new test cases, and we provide test cases for
the new boundary behaviors in Section VI.

II. HISTORY AND RELATED WORK

These operations have a long history, and we highlight some
pieces significant to the proposed operations.

A. Extending Precision

Møller[2] developed what became known as twoSum to
implement quasi double-precision and deliver accurate results
on machines that truncated rather than rounded. Kahan[5]
essentially developed fastTwoSum for compensated summation
also to alleviate truncation errors, and Dekker[8] developed
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void
twoSum (const double x, const double y,

double ∗ head, double ∗ tail)
{

const double s = x + y;
const double bb = s − x;
const double err = (x − (s − bb)) + (y − bb);
∗head = s;
∗tail = err;

}

void
fastTwoSum (const double x, const double y,

double ∗ head, double ∗ tail)
/∗ Assumes that |x| <= |y| ∗/
{

const double s = x + y;
const double bb = s − x;
const double err = y − bb;
∗head = s;
∗tail = err;

}

void
twoProduct (const double a, const double b,

double ∗head, double ∗tail)
{

double p = a ∗ b;
double t = fma (a, b, −p);
∗head = p;
∗tail = t;

}

Fig. 1. A “typical” C implementation of twoSum, fastTwoSum, and twoProduct.
Algebraic manipulations can alter exceptional behavior and the signs of
resulting zeros.

fastTwoSum to generate floating-point expansions that extend
precision. Figure 1 provides C implementations of the functions.
Both Kahan’s and Dekker’s papers cite Wolfe[9] as a more
complex method that possibly is the earliest attempt. Wolfe
uses binning instead of extending precision. Amusingly binning
returns when we consider reproducible summation below.
Higham[10], [11] provides a more complete history and a
numerical analysis of different forms of compensated summa-
tion. Møller’s quasi double-precision later was implemented
as double-double arithmetic[3] and extended to quad-double
arithmetic[4]. A double-double number consists of a pair of
floating-point numbers, a head h and a tail t. The numerical
value of the double-double is the exact, unevaluated sum h+ t.
Additionally, h and t do not overlap, that is |t| ≤ ulp(h)/2 where
ulp(h) is the value of the last bit in h’s binary representation.

These techniques found use not only in extending precision
but also in improving reproducibility in large-scale parallel ap-
plications[12] and accelerating linear algebra algorithms when
narrower precisions are drastically faster[13]. The proposed
operations implement error-free transformations[14] that are
the base of fast accurate summation[15] and relatively high
performance extra-precise matrix and linear algebra[16]–[19].

With use came optimization. Double-double multiplication

is accelerated drastically by the fusedMultiplyAdd (FMA)
operation[20]. Without FMA, producing a double-double by
multiplying two double operands x and y must check for
overflow, possibly scale, split significands by multiplying with
a constant, and accumulate the cross-multiplied pieces using
fastTwoSum, up to nine operations not counting the conditional
branch. FMA replaces all of this by computing h = x× y and
t = FMA(x,y,−h) (see twoProduct in Figure 1), which is an
exact transformation so long as the result neither overflows
nor has bits below the representable region. As we will see
in Section IV-B, however, the exceptional values that may
occur with overflow or invalid are slightly surprising. The
proposed operations provide a similar optimization for addition
and simplify exceptional behavior for both.

B. Reproducibility

Double-double arithmetic can improve reproducibility in par-
allel codes[12] but does not address the bitwise reproducibility
desired in sensitive simulations[6], [21], [22]. Numerical causes
of non-reproducibility on a single parallel platform include
optimized parallel reductions for convergence tests receiving
operands in different orders on different processors. Another is
when accumulating sufficient statistics from streaming data that
may arrive out of order. In these cases only a single “pass” over
the data is possible. Non-reproducibility between platforms can
occur from subtle implementation differences in mathematical
libraries as well as differences in parallel resources. Many
efforts to address reproducibility in linear algebra[7], [23]–[25]
rely on the proposed error-free transformations. Many vendor
libraries provide various levels of reproducibility even without
support from standards, detailed in Section II-C.

We focus on one example to illustrate use of augmentedAd-
dition, the ReproBLAS[7]. The ReproBLAS’s explicit design
goals are 1) to perform bitwise-reproducible floating point
summation, independent of the order of summation (or shape
of a reduction tree), including handling exceptions reproducibly;
2) to be as least as accurate as conventional summation (with
tunable precision); 3) to perform just one read-only pass over
the data, and/or one parallel reduction operation; 4) to use
as little memory as possible, to enable high performance by
tiling higher level operations like the BLAS. We sketch the
core algorithm for reproducible summation; details are in [7],
[23]. We take the range of floating point exponents, and divide
them into fixed intervals of equal width (say 40 consecutive
integers in double); we call each interval a bin. Then, for each
summand (in any order) we rewrite it as the exact sum of a
small number of slices, where each slice corresponds to the
significant bits lying (roughly) in a bin.

This is where augmentedAddition is used: one use of
augmentedAddition is enough to extract one slice and leave the
exact remainder. We can then sum all the slices corresponding
to the same bin exactly (and so reproducibly), because we are
implicitly doing fixed point arithmetic. But we do not need to
sum the slices in all the bins, only the bins corresponding to the
largest few exponent ranges. The number of bins summed can
be chosen based on the desired precision; in double precision
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the default is 3 bins, where each bin is represented by 2 doubles,
so 6 doubles altogether are needed to compute a reproducible
sum. Slices lying in bins with smaller exponents are discarded,
or not computed in the first place. Independent of the order
of summation, or parallel reduction order, we end up with the
same sums of slices in the same bins, all computed exactly
and so reproducibly, which we finally convert to a standard
floating point number. This requires roughly 7n conventional
floating point operations for n operands using operations
in the IEEE 754-2008 standard. If augmentedAddition is
implemented as two separate instructions, one for the head
and one for the tail[26], this falls to roughly 4n instructions.
When both instructions are issued simultaneously, this would
have the latency of 3n instructions. Section V demonstrates a
hardware-accelerated augmentedAddition operation’s potential
performance improvement for reproducible, 64-bit dot product.

C. Alternatives

There are other methods for extending precision and pro-
viding reproducible summations and dot products. Arbitrary
precision software arithmetic[27], [28] greatly increases execu-
tion times but has multiple scientific applications[29]. Wide
accumulators[30], [31] provide sufficient internal precision
in hardware to produce correctly rounded results. These
accumulators do not compose in a parallel setting unless all
internal precision can be communicated between processes.
Performance suffers as well, although combining error-free
transformations and wide accumulators can alleviate some
of the performance penalty[24]. Another method applies
high-precision anchored (HPA) accumulators[32], a wider
precision reminiscent of fixed point arithmetic but with a
programmable anchor. While very efficient in hardware, the
anchored accumulator requires either the programmer to
specify the scaling factor or a scan across all operands to
compute that factor. Correctly rounded results are another
path towards reproducibility but require more computation and
memory traffic[24], [33], [34]. Many commercial numerical
libraries including Intel’s MKL, NVIDIA’s cuBLAS, and
NAG’s libraries provide more restricted forms of reproducibility,
less strict than bitwise reproducibility, to ease debugging.

III. PROPOSED AUGMENTED ARITHMETIC OPERATIONS

At the time of writing, the draft IEEE 754-2018 stan-
dard includes three recommended (not required) opera-
tions that standardize the desired behaviors of twoSum
and twoProduct. The three operations are named aug-
mentedAddition, augmentedSubtraction, and augmented-
Multiplication. augmentedSubtraction(x,y) is equivalent to
augmentedAddition(x,−y) and will not be discussed further.
Section IV provides reasons for specific standardization deci-
sions. This section provides an overview of the specifications.
The text itself is too dependent on the standard’s definitions for
direct inclusion, but drafts can be found through the supporting
web site1. The operations currently are defined in Clause 9.5
of the drafts.

1http://754r.ucbtest.org

The operations rely on a new rounding direction,
roundTiesToZero, for reasons explained in Section IV-A.
The rounding direction is required for these operations and
is independent of other rounding attributes. This rounding
direction delivers the floating-point number nearest to the
infinitely precise result. If the two nearest floating-point
numbers bracketing an unrepresentable infinitely precise result
are equally near, the one with smaller magnitude shall be
delivered. roundTiesToZero carries all overflows to ∞ with the
sign of the intermediate result.

Let x+ y, x× y, etc. be the infinitely precise result of the
mathematical expression. In the following, we refer to the first
returned result as the head h and the second as the tail t.

augmentedAddition delivers h = roundTiesToZero(x + y)
and t = x + y − roundTiesToZero(x + y) when
roundTiesToZero(x + y) is a finite, non-zero floating-
point number. In this case, h is the rounded sum, and
t is the exactly representable error in that sum. If
roundTiesToZero(x + y) is zero, then both the head and
tail have the same sign; h = t = roundTiesToZero(x + y).
Similarly, if roundTiesToZero(x+ y) overflows, both the head
and tail are set to the same infinity, and in this case the
operation signals inexact and overflow. If either operand is
a NaN, augmentedAddition produces the same quiet NaN
for both h and t. Ideally, this NaN would be one of the
input NaNs or a quiet version of an input signaling NaN. If
x+ y is invalid, that is x and y are opposite-signed infinities,
then both h and t are the same NaN, and this operation
signals invalid. This operation signals inexact only when
roundTiesToZero(x+ y) overflows; underflows and zeros are
exact. Table II summarizes the proposed exceptional and
signed zero behavior.

augmentedMultiplication is similar to augmentedAddition
but can be inexact without overflow. If some non-zero digits
of the result, head or tail, lie strictly between ±2emin−p+1,
where emin is the minimum exponent and p is the bits of
precision, then those bits underflow to zero. Otherwise, h =
roundTiesToZero(x×y) and t = x×y−roundTiesToZero(x×y)
is exact for finite, non-zero floating-point numbers. Results for
invalid operations and NaN propagation are analogous to those
of augmentedAddition; see Table III. Operations on ±∞ and
±0 produce head and tail with the same sign, the product of
the signs of the operands.

Underflow signaling in augmentedMultiplication is subject
to the before- or after-rounding detection of tiny, non-zero
results. But any time augmentedMultiplication does not return
a pair h, t such that x×y = h+ t, the operation signals inexact.

One important note is that the standard only specifies
operations and not implementations. These operations can be
implemented in software, one hardware instruction, or multiple
hardware instructions. Section V’s performance results assume
two instructions for each operation as in [26]. One instruction
produces the head h, and one instruction produces the tail
t. Combined, the instructions can implement the augmented
arithmetic operations.

Another note is that these operations do not make sense with
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some alternate exception handling attributes. Abrupt underflow,
for example, breaks the exact transformation property of
augmentedAddition.

IV. RATIONALE

The operations in Section III differ from various existing
implementations of twoSum and twoProduct, examples of
which are in Figure 1. This section explains the differences.
Ultimately, the standard operations should define the best
possible edge cases and be useful to the most possible users.
The operations are recommended only for binary because the
requirements for decimal are not yet known.

A. Rounding Direction

Many uses for the augmented operations can be implemented
and used correctly with any faithful rounding[35] if permitted
to be non-exact transformations. The bit-wise reproducible
algorithms of Section II-B generally require that the tie-
breaking rule be independent of the generated values. Otherwise
re-ordering reduction operands could round differently. There
are five relevant rounding directions defined in IEEE 754-
2008: 1) roundTiesToEven (default), 2) roundTiesToAway
(only required for decimal), 3) roundTowardPositive, 4) round-
TowardNegative, and 5) roundTowardZero. The latter three
rounding directions break the exact transformation property of
augmentedAddition (barring overflow). The error in addition
may not be exactly representable as a floating-point number.

An early version of the proposal specified roundTiesToAway.
roundTiesToAway is sufficient for many uses of double-double
arithmetic and implementations of reproducible linear algebra
kernels. However, a survey of potential users turned up a
few cases that cannot directly use roundTiesToAway. Some
examples are the accurate geometric primitives in Triangle[36],
a high-quality and high-performance Delaunay mesh generator.
With roundTiesToAway, those would fail to expand precision
to distinguish between nearly colinear points. Additionally,
correctness proofs of some accurate summation algorithms[14],
[37] would need to be modified.

To support known uses, we introduce a new mode defined
only in the recommended augmented arithmetic operations
clause, roundTiesToZero, which is defined in Section III.
This mode suffices for the known uses and potential uses
of augmentedAddition.

B. Exceptional Behavior

The behavior of exceptional situations, exceptional values,
and signed zeros differs between “typical” implementations of
twoSum and twoProduct. Table I shows some behaviors from
the implementations in Figure 1. Double-double operations with
a NaN tail produce a NaN head, so producing a NaN tail on
overflow will leave head and tail as NaN after any subsequent
operations. On overflow, multiplication produces an invalid pair;
adding the head and tail is invalid and would deliver NaN. So
“typical” implementations of double-double and quad-double
do not have IEEE 754-like overflow semantics. This rarely

TABLE I
UNFORTUNATE “TYPICAL” IMPLEMENTATION BEHAVIOR OF

AUGMENTEDADDITION. SIMILAR BEHAVIOR OCCURS IN THE IMPLEMENTED
AUGMENTEDMULTIPLICATION. HERE x AND y ARE POSITIVE OPERANDS.

x y head tail signal

∞ + ∞ ⇒ ∞ NaN invalid
−∞ + −∞ ⇒ −∞ NaN invalid

x + y ⇒ ∞ NaN invalid, overflow, inexact
(x+ y overflows)

−x + −y ⇒ −∞ NaN invalid, overflow, inexact
(−x− y overflows)

−0 + −0 ⇒ −0 +0 (none)

x × y ⇒ ∞ −∞ overflow, inexact
(x× y overflows)

−x × y ⇒ −∞ ∞ overflow, inexact
(−x× y overflows)

−0 × 0 ⇒ −0 0 (none)

TABLE II
PROPOSED EXCEPTIONAL AND SIGNED ZERO BEHAVIOR FOR

AUGMENTEDADDITION. HERE x AND y ARE POSITIVE OPERANDS.

x y head tail signal

NaN NaN NaN NaN invalid on sNaN
±∞ NaN NaN NaN invalid on sNaN
NaN ±∞ NaN NaN invalid on sNaN

∞ ∞ ∞ ∞ (none)
∞ −∞ NaN NaN invalid
−∞ ∞ NaN NaN invalid
−∞ −∞ −∞ −∞ (none)

x y ∞ ∞ overrflow, inexact
(x+ y overflows)

−x −y −∞ −∞ overrflow, inexact
(−x− y overflows)

+0 +0 +0 +0 (none)
+0 −0 +0 +0 (none)
−0 +0 +0 +0 (none)
−0 −0 −0 −0 (none)

TABLE III
PROPOSED EXCEPTIONAL AND SIGNED ZERO BEHAVIOR FOR

AUGMENTEDMULTIPLICATION. BEHAVIOR ON UNDERFLOW IS DESCRIBED
IN THE TEXT. HERE x AND y ARE POSITIVE OPERANDS.

x y head tail signal

NaN NaN NaN NaN invalid on sNaN
±∞ NaN NaN NaN invalid on sNaN
NaN ±∞ NaN NaN invalid on sNaN

∞ ∞ ∞ ∞ (none)
∞ −∞ −∞ −∞ (none)
−∞ ∞ −∞ −∞ (none)
−∞ −∞ ∞ ∞ (none)

x y ∞ ∞ overflow, inexact
(x× y overflows)

−x y −∞ −∞ overflow, inexact
(−x× y overflows)

x −y −∞ −∞ overflow, inexact
(x×−y overflows)

−x −y ∞ ∞ overflow, inexact
(−x×−y overflows)

+0 +0 +0 +0 (none)
+0 −0 −0 −0 (none)
−0 +0 −0 −0 (none)
−0 −0 +0 +0 (none)
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TABLE IV
DOUBLE-DOUBLE ARITHMETIC LATENCY AND THROUGHPUT

IMPROVEMENTS WITH TWO-INSTRUCTION AUGMENTEDADDITION AND
AUGMENTEDMULTIPLICATION OPERATIONS[26]. LATENCY DECREASES

AND THROUGHPUT INCREASES BOTH ARE IMPROVEMENTS.

Operation Skylake Haswell

Addition latency −55% −45%
throughput +36% +18%

Multiplication latency −3% 0%
throughput +11% +16%

TABLE V
PERFORMANCE (IN MFLOPS) OF GENERAL DOUBLE-DOUBLE

MATRIX-MATRIX MULTIPLICATION[26]

Operation Intel Skylake Intel Haswell

“Typical” implementation 1732 (≈ 1/37 DP) 1199 (≈ 1/45 DP)
Two-insn augmentedAddition 3344 (≈ 1/19 DP) 2283 (≈ 1/24 DP)

Native DGEMM 63603 (MKL) 51409 (MKL)

matters in practice; twoSum and fastTwoSum implementations
are remarkably robust to overflow[38].

Signed zeros also produce unexpected results, leaving head
and tail with opposite signs in many cases. The head of
Figure 1’s functions always has the same sign as the non-
augmented operation, but the sum of head and tail will be +0
even when the sign could be preserved. A single twoSum or
twoProduct can make sense, but an arbitrary mix of double-
double operations based on twoSum and twoProduct could
produce unexpected signs.

Standards must either define all results or leave the results
explicitly as implementation-defined. The latter reduces porta-
bility and so reproducibility. We have chosen to define these
exceptional and signed zero results so the head and tail always
match. This maintains the IEEE 754 semantics for double-
double, quad-double, and similar arithmetics during sequences
of operations as well as when collapsing double-double and
quad-double by adding the components.

V. POTENTIAL PERFORMANCE IMPROVEMENTS

Reducing twoSum from Figure 1 to two instructions from
six is one obvious benefit to a two-instruction implementation
of augmentedAddition. Here we refer to hardware operations
as instructions and IEEE 754 operations as operations. Many of
the instructions in twoSum have serializing data dependencies
as well. A two-instruction augmentedAddition has no data
dependencies, and both could be dispatched simultaneously if
there are two appropriate execution units and provide nearly
the performance of a single-operation augmentedAddition.

The operation twoSum only creates a double-double number
from two input doubles. Adding two double-double numbers
with an IEEE 754-style error bound requires two calls to
twoSum, two additions, and two calls to fastTwoSum[3],
[4] for a total of 20 instructions. An implementation using
two-instruction augmentedAddition requires 10 instructions.
Multiplying two double-double numbers shows only a tiny
improvement on platforms with fusedMultiplyAdd in hardware,

from 9 instructions to eight instructions. Reduced data depen-
dencies could permit more of the instructions to be issued
simultaneously.

To emulate two-instruction augmentedAddition and aug-
mentedMultiplication, [26] replaces double-double addition
and multiplication functions with two arithmetic instructions,
+/× and min. This produces incorrect numerical results but
models the expected performance benefits. Experiments with
two Intel processors, a 4 GHz i7-6700K (Skylake) and a
3.5 GHz i7-4700K (Haswell), and full AVX2 vectorization
demonstrate the potential improvements for double-double
arithmetic. The two microarchitectures differ in the supported
number of simultaneous additions; Skylake has two addition
issue ports while Haswell has one.

Table IV shows around a 50% improvement in latency
for double-double addition. The throughput improvement is
lower with 36% for Skylake (two issue ports) and 18%
for Haswell (one issue port). Double-double multiplication
shows no gain in latency, as expected, but still over 10%
gain in throughput. Table V considers general dense matrix
multiplication (DGEMM). A slightly optimized double-double
DGEMM kernel shows a 2× performance improvement using
the emulated two-instruction augmented arithmetic operations.
The kernels still are 20× slower than the vendor-tuned
DGEMM (Intel’s MKL). The reduced data dependencies permit
further optimizations which may bring double-double matrix
multiplication within a factor of ten in performance compared
to vendor-tuned kernels.

For improvements possible in reproducible linear algebra,
we count instructions in the ReproBLAS function that splits
input operands and deposits them into bins. We expect a
two-instruction augmentedAddition to improve performance
of reproducible dot product (rddot) by around 33% from the
instruction count. To validate, we modify the ReproBLAS
source as above, replacing the fastTwoSum operations with
augmentedAddition. Figure 2 shows performance of the modi-
fied rddot relative to the fastTwoSum-based rddot on an Intel
E5-2650 (Haswell) at 2.2 GHz with 2.4 GHz DDR4 memory.
Both rddot implementations are sequential but vectorized
using AVX2. The performance improves by almost 33% for
sufficiently long vectors (over 2048 elements). This brings
the run time of reproducible dot products to around 2× the
OpenBLAS 0.2.18 dot product.

VI. GENERATING TESTS

Generating tests for the exact cases without ties is straight-
forward, as are cases for the overflow exceptional case, signed
zeros, and NaN propagation. Additionally, tests verifying
augmentedAddition remains exact on underflow are straight-
forward. Tests that exercise the data paths selectively are very
efficient[39] but particular to the implementation. Verifying
exact transformation property also verifies that the rounding
mode is not directed (to ±∞, to zero); cases that violate
exact transformation in those rounding modes are well-known.
Here we consider test cases to verify use of roundTiesToZero
as well as augmentedMultiplication’s underflow behavior. In
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Fig. 2. Fraction of ReproBLAS rddot performance showing improvement with emulated augmentedAddition. Lower numbers are better improvement over
rddot. The dashed horizontal line at 66% is the expected limit of improvement from the proposed operations. The bottom curve is the native BLAS optimized
dot product for a lower bound.

the following, we call the least significant bit of a floating-
point number x’s significand the least significant bit of x.
The minimum and maximum exponents in floating point
formats are denoted emin and emax, respectively. In IEEE 754,
emin = 1− emax. Expressing the numbers as signed integers
times powers of the radix (binary) is convenient for describing
these test cases.

Assuming that augmentedAddition(x,y) produces a result
where x + y = h + t exactly, a simple case can verify that
an implementation uses roundTiesToZero instead of another
rounding mode. Let x be a normal, finite floating-point number
where x=(−1)1−s ·T ·2E with T odd. Let y=(−1)1−s ·2E−p−1,
which has the same sign as x and which lines up just after the
last bit of x when shifted to the same exponent for the interme-
diate infinitely precise result. Then augmentedAddition(x,y) =
(x,y) if the rounding is roundTiesToZero but (x+2y,−y) for
roundTiesToEven or roundTiesToAway. With T even, y must
have the opposite sign as x. These are the only cases where
the tie-breaking direction matters, as also noticed in [38].

To test augmentedMultiplication, we need two xm and ym
whose product becomes the x and y above. Correctness of
the sign can be tested separately, so here we only consider
positive xm and ym. For a precision of p bits, any two such
xm and ym such that xm × ym requires p+1 bits to represent
and that have 11 as the last two bits suffice for the odd T
case above. Requiring p+1 bits in this case sets the first bit
as well. So xm ×ym = (4M+3+2p+1) ·2E with 0 ≤ M < 2p−1

and emin ≤ E + p−1 < emax. Test cases can sample M, factor
the significand 4M+3+2p+1, and sample random exponent
pairs Exm and Eym whose product satisfies the bounds on E.

augmentedMultiplication also can be inexact when the

infinitely precise result’s least significant bit is strictly be-
tween the least representable non-zero floating-point numbers,
±2(emin−p+1). If xm and ym both have magnitudes less than
the square root of the least representable non-zero floating-
point number, their product rounds to zero. So let at least
one of xm and ym be a normal floating-point number with
magnitude at least 2(emin−p+1). Now we generate cases where
the product xm × ym loses bits when rounded to a limited
exponent range. Because the product of two p-bit significands
can be exactly represented in 2p bits, the head and tail of
augmentedMultiplication have adjacent binary representations.
With roundTiesToZero, both hm and tm have the same sign.

The product xm × ym again needs the bits at each end
of the 2p-long significand product set to 1. The least bit
corresponds to a number at most 2emin−p to fall below the least
subnormal number and be rounded to a representable exponent.
Because they lack the implicit leading bit in IEEE 754 formats,
subnormal numbers have p − 1 bits for a significand. Let
0 ≤ k < p−1 be the number of additional bits we want below
the hard underflow threshold. We form the product from three
sampled integers: 0 ≤ M < 2p−1 − 1, 0 ≤ N < 2p−k−1, and
0 ≤ T < 2k. The integer T will be the portion below the hard
underflow threshold and will be rounded. The upper bound
on M ensures that one bit is free to absorb any carry from
rounding. The desired products are

xm × ym =

(
(2p−1 +M) ·2p︸ ︷︷ ︸

head

+N ·2k︸ ︷︷ ︸
tail

+2T +1︸ ︷︷ ︸
below

underflow

)
·2emin−p−k

Because the last bit is set to one, there are no ties when
k > 0. The k = 0 case can be tested separately to ensure
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roundTiesToZero. The results will accumulate rounding in the
bit positions occupied by M and N above when T > 2k−1. In
that case, either the result’s N is incremented by one or, when
N = 2p−k−1 −1, the result’s N = 0 and M is incremented by
one.

The significands of xm and ym can be generated by factoring
the above 2p-long integer significand. Another option is to
generate two of the integer parameters and then iterate over the
third, likely T The exponents of xm and ym can be generated
by any pair that add to emin− p− k such that at least one is
greater than (emin− p+1)/2.

VII. CONCLUSIONS

Previous uses extending precision and new uses providing
bitwise reproducible summation motivate including recom-
mended (not required) augmented arithmetic operations in the
next revision of IEEE 754. Inclusion provides an opportunity
to define exceptional situations carefully and provide IEEE
754-like semantics to extended arithmetics like double-double
and quad-double. Even if implemented using two hardware
instructions, augmentedAddition provides a 50% improvement
in double-double addition latency and nearly 2× improvement
in double-double matrix multiplication.

We have not discussed alternate exception handling (e.g.
trapping) beyond abrupt underflow (flush to zero). Other
alternate exception handling methods require a wider system
perspective to encompass many implementation possibilities.
We encourage platforms to consider how to provide alternate ex-
ception handling for multi-instruction operations in an efficient
manner, whether through hardware, compiler, or library support.
Decimal users could benefit from reproducible summation, but
details of the proof[7] require careful modification to convert
from bits to decimal digits.
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