
Enhanced Vector Math Support on the
Intel®AVX-512 Architecture

Cristina S. Anderson
Intel Corporation
2111 NE 25th Ave

Hillsboro, OR 97124
cristina.s.anderson@intel.com

Jingwei Zhang
Intel Corporation
2111 NE 25th Ave

Hillsboro, OR 97124
jingwei.zhang@intel.com

Marius Cornea
Intel Corporation
2111 NE 25th Ave

Hillsboro, OR 97124
marius.cornea@intel.com

Abstract—The Intel®AVX-512 architecture adds new capabil-
ities such as masked execution, floating-point exception sup-
pression and static rounding modes, as well as a small set
of new instructions for mathematical library support. These
new features allow for better compliance with floating-point or
language standards (e.g. no spurious floating-point exceptions,
and faster or more accurate code for directed rounding modes), as
well as simpler, smaller footprint implementations that eliminate
branches and special case paths. Performance is also improved, in
particular for vector mathematical functions (which benefit from
easier processing in the main path, and fast access to small lookup
tables). In this paper, we describe the relevant new features
and their possible applications to floating-point computation. The
code examples include a few compact implementation sequences
for some common vector mathematical functions.

Index Terms—SIMD, vector mathematical function, floating-
point

I. INTRODUCTION

SIMD (single instruction, multiple data) architecture is an
effective way to exploit data level parallelism on CPUs. The
Intel® AVX-512 instruction set is the latest SIMD extension
for the x86 instruction set architecture [1]. In addition to the
register widening from 256-bit to 512-bit, there are architec-
tural enhancements added in AVX-512 such as new types
of SIMD instructions, conditional execution, and instruction
embedded floating-point control. Here is the subset of new
AVX-512 instructions discussed in this paper:

• Setting of special floating-point outputs (and exception
signaling if specified)

• Cross-lane permutation with two sources
• Conversion of exponent of floating-point values to

floating-point values and extraction of normalized man-
tissa from floating-point values

• Scaling by powers of 2, with support for special cases
• Enhanced reciprocal and reciprocal square root approxi-

mation
• Testing types of floating-point values
• Rounding to specific number of fractional bits and sub-

sequential argument reduction
• Range restriction calculation
As a result, many vector mathematical functions can have

compact, branch-free AVX-512 implementations, conforming
to the IEEE Standard 754-2008 for Floating-Point Arithmetic

[2]. The following sections will describe each new feature in
detail, and we will show short code sequences to illustrate
usage in the implementation of common vector mathematical
functions.

II. NEW FEATURES OF INTEL® AVX-512
INSTRUCTION SET

A. Static Rounding Modes and Suppress-all-exception Bit

The rounding mode for a given floating-point operation on
the x86 architecture is usually specified dynamically in the
floating-point environment control register, except for a small
number of Intel® AVX-512 round and convert instructions,
e.g. VROUNDPD. In these cases, the rounding mode can
be specified statically using an instruction encoding attribute
in the instruction opcode, which can override the default
rounding mode stored in the control register. The static round-
ing mode override in AVX-512 also implies suppress-all-
exceptions (SAE), which treats all floating-point exceptions as
masked, and in addition ensures that no floating-point status
flag is changed. In the absence of SAE, there would have
to be a trade-off between standard conformance [2], [3], and
performance (additional steps or branches would be needed
to ensure strict standard conformance). The static rounding
mode feature is also used, e.g. round-toward-zero to avoid
generating infinities in intermediate steps (an example will
follow in Section E); a static round-to-nearest could also be
useful in accuracy-sensitive applications.

B. Handling of Special Cases

Intel® AVX-512 provides mask registers that can be used
for conditional execution. Each AVX-512 instruction in EVEX
encoding can take an extra operand called mask register, which
contains the predicate bits to control the output of each vector
element. The SIMD operation on a given element will be
carried out only if its corresponding mask predicate bit is set,
otherwise, the destination element is either preserved (merge-
masking) or zeroed out (zeroing-masking.) Masked execution
is an efficient way of handling special cases in the main path.
As an example, consider

VADDPS dest {mask}{z}, src1, [src2]{1to16}, {rz-sae}.
This instruction will first load a 32-bit element from memory
using the address in src2, and will replicate that element 16

116XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE

times to form a vector 512-bit wide, also known as broadcast-
ing in AVX-512. Then, it will add that vector withsrc1, element
by element, and place the result into dest if the corresponding
mask bit is 1. Otherwise, it will write the value zero to dest as
indicated by {z} for zeroing-masking (the default is merge-
masking.) The addition is performed in round-toward-zero
mode, with SAE as indicated by {rz-sae}.

There is also a new “fixup” instruction that can be used
to set special outputs, and optionally raise Invalid or Divide-
by-Zero exceptions (the status flags are set when exceptions
are masked). However, in most cases masked execution is
sufficient for handling special cases. Its format is:

VFIXUPIMMPS/PD dest {mask}{z}, src1, src2, imm8.
The destination register dest contains the results of a function
computation; these results must be correct for valid inputs in
the function domain, but not necessarily for special inputs (e.g.
the computation may have incorrectly produced a NaN output
for an infinity input). VFIXUPIMM can be used to correct
the outputs for special cases. The first source src1 is treated
as a 32-bit table (8 entries of 4 bits each), which defines the
desired outputs for each of the following input classes: qNaN,
sNaN, Zero, +1.0, ±∞, finite positive (and not 1.0), finite
negative. A 4-bit table entry is read for each element, based
on the class of the input src2. This table entry selects one of
16 possible outputs, including: unmodified destination (used
when src2 is in the function domain and dest already contains
the desired result), destination equal to the unmodified input
(e.g. to correctly set sqrt(±0) = ±0, qNaN Indefinite, ±∞,
±0, and other values that can be useful for fixing up common
functions, e.g. π/2 for atan(+∞). The 8 bits in the immediate
field imm8 can be set to raise either Invalid, or Divide-by-Zero
when src2 is one of the following: ±∞, finite negative, sNaN,
+1.0, ±0.

C. Permute Instructions

The syntax for these instructions is:

• VPERMI2PS/PD dest {mask}{z}, src1, src2.
Permute elements in src1 and src2, using indices from
dest; dest is overwritten by the results

• VPERMT2PS/PD dest {mask}{z}, src1, src2.
Permute elements in src2 and dest, using indices from
src1; dest is overwritten by the results

• VPERMPS/PD dest {mask}{z}, src1, src2.
Permute elements in src2 using indices in src1; store
results in dest

Lookup tables are frequently used in mathematical library
design [4]; however, poor vector gather support limits their
benefit for vector functions. A small table lookup can be
implemented using one of the VPERM instructions. The size
of the table would be 32 single or 16 double precision
elements for VPERMI2 and VPERMT2, and 16 single or 8
double for VPERM. Larger table lookup can be implemented
with a sequence of permute and blend instructions. These
instructions can be a lot less expensive than hardware vector
gather operation in term of performance.

D. Exponent and Mantissa Extraction
The new VGETEXP instruction returns the unbiased expo-

nent of the input, in floating-point format. It is implemented
as VGETEXP(x) = floor(log2(|x|)) for all inputs, includ-
ing subnormals and special cases. The associated instruction
VGETMANT normalizes the mantissa to one of the four
following intervals, according to bits in the immediate field:
[1, 2), [0.5, 1), [0.75, 1.5), and [0.5, 2), where the last one
takes into account whether the exponent is even or odd. Other
bits in the immediate field can be used to allow VGETMANT
to raise Invalid exception on negative inputs, and to specify
whether the sign of the input should be preserved in the output.

VGETEXPPS/PD dest {mask}{z}, src1.
VGETMANTPS/PD dest {mask}{z}, src1, imm8.

The following identity holds for these two instructions: x =
2VGETEXP(x)∗VGETMANT(x, 0), where 0 in the immediate field
means the mantissa is normalized to [1, 2), the sign of x is
preserved, and no exception is raised.

In Example 1, log2(x) approximation accurate to 21 bits
is computed using piecewise polynomial interpolation. The
polynomial coefficients for each of the 16 intervals considered
are stored in separate tables, and accessed with VPERMPS
instructions. The mantissa is normalized to mx ∈ [0.75, 1.5),
and the leading mantissa bits serve as table indices for the
coefficient tables. The polynomial approximates log2(mx) =
log2((mx − 1) + 1).

The VGETMANT immediate field also requests that the
Invalid exception be signaled when the input is negative; the
VGETMANT result is set to qNaN Indefinite in that case.
VGETMANT returns 1.0 for ±∞ and ±0, while VGETEXP
returns +∞ and −∞ for ±∞ and ±0 respectively. Both
instructions generate NaNs for NaN inputs. This ensures that
special cases are treated correctly, without additional steps.
The only standard requirement that is not met in Example 1 is
signaling Divide-by-Zero for log2(±0), which could be solved
by adding a VFIXUPIMM operation at the end.
; input, output in zmm0
vgetmantps zmm1, zmm0, 0bh ; mantissa mx in [3/4, 3/2)
vgetexpps zmm2, zmm0 ; exponent
vpsrld zmm3, zmm1, 23-4 ; index for coefficient tables
vsubps zmm1, zmm1, [One]{1to16} ; reduction r=mx-1
vpermps zmm14, zmm3, ZMMWORD PTR [C4] ; c4
vpermps zmm13, zmm3, ZMMWORD PTR [C3] ; c3
vpermps zmm12, zmm3, ZMMWORD PTR [C2] ; c2
vpermps zmm11, zmm3, ZMMWORD PTR [C1] ; c1
vmulps zmm5, zmm1, zmm1 ; rˆ2
vfmadd213ps zmm14, zmm1, zmm13 ; c3+c4*r
vpermps zmm4, zmm3, ZMMWORD PTR [Exp] ; exponent adjustment
vfmadd213ps zmm12, zmm1, zmm11 ; c1+c2*r
vaddps zmm0, zmm2, zmm4 ; adjusted exponent k
; p = (c1+c2*r)+rˆ2*(c3+c4*r)
vfmadd213ps zmm14, zmm5, zmm12
vfmadd231ps zmm0, zmm1, zmm14 ; result = k + r*p

Example 1. SIMD single precision log2(x) accurate to 21 bits

E. Scaling by Powers of 2
The new instruction is
VSCALEFPD/PS dest {mask}{z}, src1, src2,

which computes dest = src1∗2�src2�. Overflow and Underflow
exceptions are treated as described in the IEEE Standard 754-
2008 [2], even though this is not an IEEE-defined operation.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 117

Special case behavior is carefully defined, in a manner that
ensures that VSCALEF can function as a last step as well
as a fixup instruction in implementations of functions such
as exp() or pow() (meaning that no other steps are needed
to set the correct outputs for special inputs, e.g. ±∞). A
branch-free double precision exp() computation accurate to
50 bits is shown in Example 2. exp(x) is formed as exp(x−
Z0 log(2))∗exp(Z0 log(2)) = eR∗2Z0 = eR∗2Z0−�Z0�∗2�Z0�,
where R = x − Z0 log(2) and Z0 is x/ log(2) rounded
down to 4 fractional bits. eR is calculated through polynomial
approximation, 2Z0−�Z0� through table-lookup, and a final
VSCALEF instruction is used to scale their product by 2�Z0�

and to generate the final result. VSCALEF also yields correct
results for special exp() cases (±∞ and NaNs). Infinity inputs
to our computation sequence generate an intermediate NaN
result, which is then passed as the first argument to VSCALEF.
However, VSCALEF is defined so that VSCALEF(qNaN, +∞)
= +∞, and VSCALEF(qNaN, −∞) = 0. Inputs that are
very large in magnitude are also handled successfully in the
main path: spurious overflow to infinity (which would later
lead to an intermediate NaN result) is avoided by executing
x/ log(2) in round-toward-zero rounding mode, and other
unwanted Overflow/Underflow exceptions in the polynomial
computation are avoided by forcing the reduced argument to
a limited range. By ensuring a finite and positive result for the
exp(R)∗2frac(Z0) computation, the final VSCALEF instruction
can correctly generate overflow/underflow results for all out-
of-range inputs. Spurious status flags (such as Invalid for
infinity inputs) are avoided by using SAE for the affected
operations.
; input, output in zmm0
; 2ˆ(52-4)*1.5 + x*log2(e), RZ mode
vmovapd zmm3, ZMMWORD PTR [Log2E]
vmovapd zmm4, ZMMWORD PTR [Shifter]
vfmadd213pd zmm3, zmm0, zmm4, {rz-sae}
; Z0 ˜= x*log2(e), rounded down to 4 fractional bits
vsubpd zmm5, zmm3, zmm4
; R = x - Z0*log(2), SAE on
vfnmadd231pd zmm0, zmm5, [Ln2Hi]{1to16}, {rn-sae}
vfnmadd231pd zmm0, zmm5, [Ln2Lo]{1to16}, {rn-sae}
; Table lookup: T ˜= 2.0ˆf, where f = Z0 - floor(Z0)
vmovapd zmm10, ZMMWORD PTR [ExpTbl]
vpermt2pd zmm10, zmm3, ZMMWORD PTR [ExpTbl+64]
; mask exponent bit to ensure |R|<2 even for special cases
vandpd zmm0, zmm0, [EMask]{1to16}
<Polynomial computation (of degree 6) omitted where
P (zmm11) ˜= exp(R)-1>
vfmadd213pd zmm11, zmm10, zmm10 ; T+T*P
vscalefpd zmm0, zmm11, zmm5 ; 2ˆfloor(Z0)*(T+T*P)

Example 2. SIMD double precision exp(x) accurate to 50 bits

Some other examples of VSCALEF, VGETMANT, VGET-
EXP usage are:

• Software division, where a/b = ma2
ea/mb2

eb =
(ma/mb) ∗ 2ea−eb with mx = VGETMANT(x, 0), ex =
VGETEXP(x), and the final scaling through VSCALEF.
This reduction allows for a branch-free implementation
of division, which covers overflow, underflow, and also
special inputs (zeroes, infinities, subnormals). |mx| is in
[1,2) for all non-NaN inputs. ma/mb can be computed
to the desired accuracy with Newton-Raphson iterations.
The SAE feature can help ensure spurious flag settings

do not occur. Flags can be set correctly as part of
the computation (except for Divide-by-Zero, which may
require an additional step).

• xα, where α is constant (e.g. α = 1/3 for the
cube root function). The basic reduction for this com-
putation is: xα = (mx2

ex)α = (mx)
α2exα =

(mx)
α2exα−�exα�2�exα�.

F. Approximation Instructions
Approximations for the reciprocal and reciprocal square root

functions provided by the following instructions can be refined
easily to higher accuracy, and can often be used to get software
implements of division, reciprocal, square root, and reciprocal
square root with better throughput performance than hardware.

VRCP14PS/PD dest {mask}{z}, src1.
VRSQRT14PS/PD dest {mask}{z}, src1.
The new instructions have an accuracy of at least 14 bits (the

relative error of the approximation is less than 2−14), and treat
subnormals correctly (unlike the legacy instructions RCPPS
and RSQRTPS). They are offered in both single and double
precision, where double precision computations benefit the
most, since double precision reciprocal and reciprocal square
root approximation instructions were not available before. The
increased accuracy (from 11.5 bits to 14 bits) is sufficient
to eliminate one Newton-Raphson iteration from a 50-52 bit
reciprocal calculation.

For some mathematical functions, a rounded VRCP14PD
result can be used in place of an expensive reciprocal
table lookup. The same technique could be used before
via the legacy RCPPS, however, less efficient due to the
lack of RCPPD. Examples of functions that can benefit
are logarithm functions (discussed in more detail in Section
H) and the cube root functions. For cube root, (mx)

1/3

with mx ∈ [1, 2) can be rewritten as (mx)
1/3 = (mx ∗

RCP(mx))
1/3 ∗ (RCP(mx))

−1/3 = (1 + (mx ∗ RCP(mx) −
1))1/3∗(RCP(mx))

−1/3 = (1+r)1/3∗(RCP(mx))
−1/3, where

RCP(mx) is the reciprocal approximation of mx rounded to a
fixed number of fraction bits using VRCP14 and VRNDSCALE
instructions. (1+ r)1/3 is calculated with polynomial approx-
imation of r and (RCP(mx))

−1/3 is usually obtained by table
lookup.

G. Testing of Floating-Point Categories
This is achieved with the new instruction VFPCLASS:
VFPCLASSPS/PD dest {mask}{z}, src1, imm8.
VFPCLASS checks whether the input belongs to any of

the special floating-point classes specified in the immediate
field imm8. The instruction sets a bit in the dest mask for
each element in the input register, to indicate whether it is
in any one of the special classes it was checked against. The
different classes that can be checked for are sNaN, qNaN, +0,
−0, +∞, −∞, subnormal, and finite negative value. The user
can check for one or more of these classes, by setting the
corresponding bits in the imm8 field. VFPCLASS is used to
detect special cases so they can be directed to a special path,
or alternatively, handled with masked operations in the main
path. Two examples are shown below.

118 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

; input, output in zmm0
vrcp14pd zmm1, zmm0 ; R0 ˜= 1/x
vmovapd zmm4, zmm0 ; copy x
vfnmadd213pd zmm0, zmm1, [One]{1to16}, {rn-sae} ; e0=1-x*R0
vfpclasspd k2, zmm1, 1eh ; x +/-Inf or +/-0?
vfmadd213pd zmm0, zmm1, zmm1, {rn-sae} ; R1 = R0+R0*e0
knotw k3, k2 ; non-special mask (k3 = NOT k2)
vfnmadd213pd zmm4, zmm0, [One]{1to16}, {rn-sae} ; e1=1-x*R1
; special cases: return RCP14(x) if k2=1
vblendmpd zmm0 {k2}, zmm0, zmm1
; return result of computation if k3=1
vfmadd213pd zmm0 {k3}, zmm4, zmm0, {rn-sae} ; R1+R1*e1

Example 3. SIMD double precision 1/x accurate to 52 bits

1) Reciprocal Sequence, Square Root Sequence: The re-
duced argument for the 1/x computation is e = 1 − x ∗
VRCP14(x). This expression evaluates to NaN when x is
±0 or ±∞, as VRCP14 returns the correct result for these
special cases. VFPCLASS allows the programmer to set a
mask value for x = ±0 or ±∞, and to clear the mask for
all other x. One can then use this mask to select between the
VRCP14 output (result for special cases), or the result of a
reciprocal refinement computation starting with VRCP14 (for
typical inputs). Example 3 shows a double precision reciprocal
computation that follows the steps outlined above. In a similar
manner, a square root computation based on VRSQRT14 would
use VFPCLASS to create a mask for x = ±0 or x = +∞ (the
result is equal to the input in these special cases).

2) Power function: The main path of pow(x, y) = 2y log2(x)

does not work when x ≤ 0, x = ∞ or NaN, or y =
∞ or NaN. One VFPCLASS can be used to set xSpecialMask
to 1 for x ≤ 0 or x = ∞ or NaN. A second VFPCLASS
would be used to set ySpecialMask to 1 for y = ∞ or NaN.
A branch to a secondary path is taken when either mask is
set.

H. Enhanced Rounding and Fraction Computation

The new instructions used for this purpose are VRND-
SCALE and VREDUCE:

VRNDSCALEPS/PD dest {mask}{z}, src1, imm8,
VREDUCEPS/PD dest {mask}{z}, src1, imm8.
The VRNDSCALE instruction rounds the input to integer,

plus M fraction bits, with result stored in floating-point for-
mat. The operation of VRNDSCALE(src, imm8) is equivalent
to roundToInt(src · 2M)2−M , performed as if with unbounded
exponent (i.e. there is no overflow), where M is an integer
retrieved form the upper 4 bits of imm8 and the lower 4 bits
of imm8 specifies rounding and exception reporting controls
similar to the legacy VROUND instruction. The operation of
VREDUCE(src, imm) is equivalent to src − VRNDSCALE(src,
imm8). VRNDSCALE can be used in argument reduction step
for the log() function. The argument reduction for log(x),
where 1 ≤ x < 2, can be done like this:
y = RCP14(x); // y is in [0.5, 1]
y0= RNDSCALE(y, k<<4); // y0 has k mantissa bits
R = x*y0-1; // |R|<2ˆ(-14)+2ˆ(-k)

We have now log(x) = − log(y0) + log(1 + R), where
log(1 + R) can be computed via polynomial approximation,

and log(y0) can be retrieved from a lookup table of 2k−1 +1
elements.

The most significant benefit of VREDUCE is latency re-
duction in common transcendental functions such as exp 2()
and pow(). Uses in other transcendental functions such as
atan() are also possible. Example 4 shows such usage in a
single precision exp 2() implementation. As with other code
examples, all inputs are handled correctly in the main path
(including special cases.)
; input, output in zmm0, K = floor(x)
vreduceps zmm3, zmm0, 0x41 ; reduction r=x - K.b1b2b3b4
vaddps zmm1, zmm0, [C]{1to16}, {rd-sae} ; C=1.5*2ˆ{23-4}
vbroadcastps zmm2, [C3] ; c3
vfmadd213ps zmm2, zmm3, [C2]{1to16} ; c3*r+c2
vpermps zmm4, zmm1, ZMMWORD PTR [T] ;table for 2ˆ(.b1b2b3b4)
vmulps zmm1, zmm4, zmm3 ; T*r
vfmadd213ps zmm2, zmm3, [C1]{1to16} ; c3*rˆ2+c2*r+c1
vfmadd213ps zmm2, zmm1, zmm4 ; T+T*r*(c3*rˆ2+c2*r+c1)
vscalefps zmm0, zmm2, zmm0 ; scale by 2ˆK

Example 4. SIMD single-precision exp 2(x) accurate to 22 bits

I. Range Restriction Calculation

The range restriction calculation instructions VRANGEP-
S/PD in AVX-512 can be seen as an extension of the legacy
MAXPS/PD and MINPS/PD instructions. The new instructions
add a control field imm8 to select a comparison operation
out of minNum, maxNum, minNumMag, and maxNumMag
according to the IEEE Standard 754-2008 [2], using imm8[1:0]
and the sign of the output using imm8[3:2]. The instruction
format is:

VRANGEPS/PD dest {mask}{z}, src1, src2, imm8.
An example of using such an instruction other than in the

IEEE comparison operations mentioned above, could be in
the Fast2Sum [5] algorithms, when the relative order of two
numbers to be summed is not known in advance.

The Fast2Sum algorithm below requires |a| ≥ |b|, which
could be achieved by using VRANGE instruction to select a =
maxNumMag(a, b) and b = minNumMag(a, b).

s = (a+ b)rn,

z = (s− a)rn,

t = (b− z)rn.

III. PERFORMANCE EVALUATION AND
CONCLUSIONS

Most common functions in the vector mathematical library
from the Intel® Math Kernel Library were optimized for AVX-
512, using the new features presented in this paper, with their
performance numbers published online [6].

Throughput-oriented sequences such as those used in
the software-pipelined vector mathematical library typically
achieve the highest speedup ratios with AVX-512 instructions.
This is no surprise, since the new instructions were primarily
designed to reduce the total number of operations in numerical
computations; the effect on latency is less pronounced. It is
also not unexpected that higher accuracy sequences (requiring
more complex computations) tend to benefit more from the
new instructions. Implementations using simple arithmetic

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 119

evaluations (such as polynomials) and no bit manipulations
have little opportunity for further optimization.

TABLE I

Function Single precision Double precision
AVX-512 new instructions w/o with w/o with

exp2 .83 .59 1.68 1.13
exp .84 .67 1.69 1.33
log2 1.07 .81 2.55 2.31
log .98 .82 2.46 2.30
pow 5.30 3.49 9.45 6.74
cbrt 2.61 1.34 3.47 3.07

Table I compares the performance of selected mathematical
functions having ulp errors of at most 4 ulps (units-in-the-
last-place), with and then without using the new AVX-512
instructions. The performance numbers are in clocks per
element, for vectors of 1024 elements (the SIMD code are not
unrolled), on Intel® Xeon® Platinum 8180 CPU @ 2.50GHz.

REFERENCES

[1] Intel® Architecture Software Developers Manual, https://software.intel.
com/en-us/articles/intel-sdm.

[2] 754-2008 - IEEE Standard for Floating-Point Arithmetic http://standards.
ieee.org/findstds/standard/754-2008.html.

[3] ISO/IEC 9899:2011 - Programming languages C https://www.iso.org/
standard/57853.html.

[4] Ping Tak Peter Tang, “Table-driven implementation of the logarithm
function in IEEE floating-point arithmetic,” ACM Transactions on
Mathematical Software, 16(4):378-400, 1990.

[5] T. J. Dekker, “A floating-point technique for extending the available
precision,” Numerische Mathematik, 18(3):224-242, 1971.

[6] Intel® Math Kernel Library 2018 Vector Mathematics Performance and
Accuracy Data https://software.intel.com/sites/products/documentation/
doclib/mkl/vm/vmdata.htm.

120 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

