

Plans for IEEE Standard 754-2028

E. Jason Riedy

Georgia Institute of Technology

25th IEEE Symposium on Computer Arithmetic, 26 June 2018

Outline

Smaller Work Items

Documenting Decisions

Graduating / Retiring Functionality

Debatable Decisions

Bigger Picture Items

Ubiquitous Parallelism

New Driving Applications: Machine Learning

Oddball Architectures

IEEE Standardization Process

Summary

Smaller Work Items

Documenting Decisions

- 1985 was good
 - Many publications detailing decisions
- 2008 was not
 - Oral history
 - Minutes (thanks to David Bindel)
 - Some email archives
- 2018 will be better
 - Working notes to be available
- Ramp up to 2028?

Which recommended operations graduate?

- Fixed min/max?
- Correctly rounded special functions?
- Augmented arithmetic operations?
- Reductions? (to be mentioned later)
- NaN payload operations?

Oh, and "security."

- Extended and extensible precisions?
- Nail down underflow?
- (Sure others will have more opinions...)

I'm dodging new inclusions for now.

- Special function special cases
 - Power, x^y . All the joy for integral values of y.
 - Preference for conformal mappings
 - "Much ado about nothing's sign bit..."
- abs, negate as numeric rather than "bit"?
 - So raise invalid on signaling NaNs.
 - What about **copy**? Traditionally left to implementations.

The endless argument. Not now.

Clearly there's a need, but there is no clear path.

Bigger Picture Items

- $\cdot\,$ We need compose-able operations.
 - Recommended reduction operations cannot be used to build higher-level parallel operations.
- Reproducibility in the face of dynamic scheduling.
- Traps are out already, replaced by alternate exception handling.
- Can a more data-flow approach help?
- And then there's energy use...

- binary16: The right split?
 - binary8? binary5?
- Will five-eight years be enough for convergence?
 - (Vanishing gradients are an issue.)
- And there is little numerical analysis...

Oddball / Novel Architectures

- Accelerators (via CAPI, NVLINK, ...)
- "Easy" FPGA programming: OpenCL, Chisel, SPIRAL
- Data-centric, memory-centric proposals and systems

• Quantum, neuromorphic, analog

What are the arithmetic and debugging considerations?

Testbeds:

- CRNCH Rogues Gallery at Georgia Tech
- CENATE at PNNL

- ExCL at ORNL
- JLSE at Argonne
- ASC at Sandia

- Not well taught
- Many analyses do not support "special cases" like overflow (not naming names)
- Others never even try running **paranoia**, etc.
- Thankfully hardfloat / rocket core exists

IEEE Standardization Process

- 1. PAR: Project Authorization Request, defines scope
 - Current revision's PAR includes backwards compatibility.
- 2. Form a committee.
 - Officers: Chair, vice chair, secretary, editor. Lacking...
- 3. Then, eventually, agree to send a revision to the sponsor (MSC).

Summary

Summary

There's work to do.

There's thinking involved. Correct scope?

And effort. (Committee officers...)

Timeframe: 2023 for a PAR if desired.

And if we're optimistic about five years being enough time to find convergence, then again time to decide.

IEEE 754 is not the only approach. Can have others!