

Augmented Arithmetic Operations

 Proposed for IEEE 754-2018E. Jason Riedy

Georgia Institute of Technology $25^{\text {th }}$ IEEE Symposium on Computer Arithmetic, 26 June 2018

Outline

History and Definitions

Decisions

Testing

Summary

History and Definitions

Quick Definitions

twoSum Two summands x and $y \Rightarrow$ sum s and error e fastTwoSum Two summands x and y with $|x| \geq|y| \Rightarrow$ sum s and errore twoProd Two multiplicands x and $y \Rightarrow$ product p and error e

All can overflow. Only twoProd can underflow with gradual underflow.

Otherwise, relationships are exact for finite x and y.
These are for binary floating point.

Partial History

- Møller (1965), Knuth (1965): twoSum for quasi double precision
- Kahan (1965): fastTwoSum for compensated summation
- Dekker (1971): fastTwoSum for expansions
- Shewchuk (1997): Geometric predicates
- Brigg (1998): quasi double precision implementation as double-double
- Hida, Li, Bailey (2001): quad-double
- Ogita, Rump, Oishi (2005...): Error-free transformations
- IEEE 754-2008: Punted to the future
- Ahrens, Nguyen, Demmel (2013...): ReproBLAS

"Typical" twoSum

void
twoSum (const double x, const double y, double * head, double * tail)
// Knuth, second volume of TAoCP
\{
const double $s=x+y$;
const double $\mathrm{bb}=\mathrm{s}-\mathrm{x}$;
const double err $=(x-(s-b b))+(y-b b)$;
*head = s;
*tail = err;
\}

Six instructions, long dependency chain.
Reducing to one or two instructions: More uses.

twoProduct

void

two Product (const double a, const double b, double *head, double *tail)

$\{$

```
double p = a * b;
double t = fma ( }\textrm{a},\textrm{b},-p)
*head = p;
*tail = t;
```

Already two instructions.
With the right instruction.

twoSum, twoProd Unusual Exceptional Cases

| x | | y | | head | tail |
| :---: | :---: | :---: | :---: | :---: | :---: | signal

Other Orders, Other Cases

- Algebraic re-orderings produce different cases
- Different signs
- Different NaN locations
- Similarly for two Prod and fastTwoSum.
- Hence, double-double behaves strangely...
- And reprodicibility becomes tricky.

Reproducible Linear Algebra

- Ahrens, Nguyen, Demmel: K-fold indexed sum
- Base of the ReproBLAS, associative
- Core operation: fastTwoSum!
- But rounding must not depend on the output value. Details:
- Demmel and Nguyen, "Fast Reproducible Floating-Point Summation," ARITH21, 2013.
- Ahrens, Nguyen, and Demmel, "Effcient Reproducible Floating Point Summation and BLAS," UCB Tech Report, 2016.
- bebop.cs.berkeley.edu/reproblas/

Note: There are other methods, e.g. ARM's.

Performance?

Emulating augmentedAddition as two instructions improves double-double:

Operation Skylake Haswell

Addition	latency	-55%	-45%
	throughput	$+36 \%$	$+18 \%$
Multiplication	latency	-3%	0%
	throughput	$+11 \%$	$+16 \%$

DDGEMM MFLOP/s: Operation

Intel Skylake Intel Haswell
"Typical" implementation $1732(\approx 1 / 37 \mathrm{DP}) \quad 1199(\approx 1 / 45 \mathrm{DP})$
Two-insn augmentedAddition 3344 ($\approx 1 / 19$ DP) 2283 ($\approx 1 / 24$ DP)
Dukhan, Riedy, Vuduc. "Wanted: Floating-point add round-off error instruction," PMAA 2016.
ReproBLAS dot product: 33% rate improvement, only $2 \times$ slower than non-reproducible.

Decisions

Decisions Made for Standardization

- Time to standardize?
- Was considered for 2008, but only use was extending precision.
- Now more uses that can benefit.
- Names?
- twoSum, etc. already exist.
- So augmented arithmetic operations.
- augmentedAddition, augmentedSubtraction, augmentedMultiplication
- Exceptional behavior?
- My first proposal was twoSum above.
- Generally not wise...
- Rounding...

Standard Behavior augmentedAddition (I)

$x \quad y$ head tail signal

NaN NaN NaN NaN invalid on sNaN
$\pm \infty \quad \mathrm{NaN} \quad \mathrm{NaN}$ NaN invalid on sNaN
$\mathrm{NaN} \pm \infty \quad \mathrm{NaN} \quad \mathrm{NaN}$ invalid on sNaN

∞	∞	∞	∞	(none)
∞	$-\infty$	NaN	NaN	invalid
$-\infty$	∞	NaN	NaN	invalid
$-\infty$	$-\infty$	$-\infty$	$-\infty$	(none)
x	y	∞	∞	overrflow, inexact

$-x \quad-y \quad-\infty \quad-\infty \quad$ overrflow, inexact ($-x$ - y overflows)

Standard Behavior augmentedAddition (II)

x	y	head	tail	signal
+0	+0	+0	+0	(none)
+0	-0	+0	+0	(none)
-0	+0	+0	+0	(none)
-0	-0	-0	-0	(none)

Double-double, etc. look more like IEEE 754.

Rounding

- Reproducibility cannot round ties to nearest even.
- Depends on the output value.
- Leaves rounding ties away...
- Already exists for binary.
- Surveyed users.
- Shewchuck: triangle could not use it.
- Rump, et al.: Proofs need reworked.
- So rounding ties toward zero.
- roundTiesToZero from decimal
- Only these operations.
- sigh.

Testing

Testing augmentedAddition

- Assume p bits of precision, and augmentedAddition $(x, y) \Rightarrow(h, t)$.
- Typical cases are fine, only need special cases to test for roundTiesToZero.
- Generate x, y such that y immediately follows x and causes a tie that rounds to a value easy to check.
- Params: s sign, T significand, E exponent
- $x=(-1)^{1-s} \cdot T \cdot 2^{E}$ with T odd
- $y=(-1)^{1-5} \cdot 2^{\mathrm{E}-p-1}$
- Results:
- roundTiesToZero: (x, y)
- Away or to even: $(x+2 y,-y)$

Testing augmentedMultiplication: Rounding

- Similarly need special cases to test for roundTiesToZero and underflow.
- Generate x, y such that $x y$ requires $p+1$ bits and has 11 as the final bits.
- $x_{m} \times y_{m}=\left(2^{p+1}+4 M+3\right) \cdot 2^{E}$ with $0 \leq M<2^{p-1}$ and emin $\leq E+p-1<$ emax
- Sample M
- Factor the significand $2^{p+1}+4 M+3$
- Sample random exponents $E_{X_{m}}$ and $E_{y_{m}}$ with

$$
e \min \leq E_{x_{m}}+E_{y_{m}}<e m a x
$$

- But also need underflow...

Testing augmentedMultiplication: Underflow

- Testing underflow: Product needs the tail chopped off by underflow.
- Let $0 \leq k<p-1$ be the number of additional bits we want below the hard underflow threshold.
- Sample:

$$
\begin{aligned}
\cdot 0 & \leq M<2^{p-1}-1 \\
\cdot 0 & \leq N<2^{p-k-1} \\
\cdot 0 & \leq T<2^{k} \\
x_{m} \times y_{m} & =(\underbrace{\left(2^{p-1}+M\right) \cdot 2^{p}}_{\text {head }}+\underbrace{N \cdot 2^{k}}_{\text {tail }}+\underbrace{2 T+1}_{\begin{array}{c}
\text { below } \\
\text { underflow }
\end{array}}) \cdot 2^{\text {emin-p-k }}
\end{aligned}
$$

- This case must signal inexact \& underflow.

Reference Code

Not done yet, but...

1. Handle special cases.
2. If no ties (far case), twoSum.
3. If ties (near case), split and take care.

- Tools from the next talk.

Should be slow but clear.
Anyone feel like adding this to the RISC-V Rocket core?

Summary

Summary

- Three "new" recommended ops in draft IEEE 754-2018
- augmentedAddition, augmentedSubtraction, augmentedMultiplication
- Specified to support extending precision (double double), reproducible linear algebra
- Two instruction implementation can provide good performance benefits.
- Quite easily testible
- Future: Decimal? Hardware?

fastTwoSum

void

```
fastTwoSum (const double x, const double y,
double * head, double * tail)
/* Assumes that }|x|\leq|y| *
{
```

 const double \(s=x+y\);
 const double \(b b=s-x\);
 const double err \(=y-b b\);
 *head = s;
 *tail = err;
 \}

Standard Behavior augmentedMultiplication (I)

X	y	head	tail	signal
NaN	NaN	NaN	NaN	invalid on sNaN
$\pm \infty$	NaN	NaN	NaN	invalid on sNaN
NaN	$\pm \infty$	NaN	NaN	invalid on sNaN
X	y	∞	∞	overflow, inexact ($x \times y$ overflows)
$-x$	y	$-\infty$	$-\infty$	overflow, inexact ($-x \times y$ overflows)
x	-y	$-\infty$	$-\infty$	overflow, inexact ($x \times-y$ overflows)
$-x$	-y	∞	∞	overflow, inexact ($-x \times-y$ overflows)

Standard Behavior augmentedMultiplication (II)

x	y	head	tail	signal
∞	∞	∞	∞	(none)
∞	$-\infty$	$-\infty$	$-\infty$	(none)
$-\infty$	∞	$-\infty$	$-\infty$	(none)
$-\infty$	$-\infty$	∞	∞	(none)
+0	+0	+0	+0	(none)
+0	-0	-0	-0	(none)
-0	+0	-0	-0	(none)
-0	-0	+0	+0	(none)

Double-double, etc. look more like IEEE 754.

