A CORRECTLY ROUNDED MIXED-RADIX FUSED-MULTIPLY-ADD

ARITH25 - Amherst, USA June 25th, 2018

Clothilde Jeangoudoux and Christoph Lauter

clothilde.jeangoudoux@lip6.fr, christoph.lauter@lip6.fr
Sorbonne Université, CNRS, LIP6 UMR 7606

Motivations

```
int main() {
    Decimal64 a = 0.1D;
    double b = 10.25;
    _Decimal64 c = -1.025D;
    double d;
    d = a * b + c;
    return 0;
}
``` universite

\section*{Motivations}

\section*{What we would like to get:}

Something close to \(\mathrm{d}=0.0\)
```

int main() {
Decimal64 a = 0.1D;
double b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = a * b + c;
return 0;
}

```

\section*{Motivations}
```

int main() {
Decimal64 a = 0.1D;
double b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = a * b + c;
}

```
```

    return 0;
    ```
```

    return 0;
    ```

What we would like to get:
Something close to \(\mathrm{d}=0.0\)

\section*{What we actually get:}
- Nothing!

\section*{Motivations}
```

int main() {
Decimal64 a = 0.1D;
double b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = a * b + c;

```
\}

\section*{What we would like to get:}

Something close to \(\mathrm{d}=0.0\)

\section*{What we actually get:}
- Nothing!
- Compilation with gcc 5.4 yields:
error: can't mix operands of decimal float and other float types
```

    return 0;
    ```

\section*{Motivations}
```

int main() {
Decimal64 a = 0.1D;
double b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = ((double) a) * b +
((double) c);
return 0;
}

```

\section*{What we would like to get:}

Something close to \(\mathrm{d}=0.0\)

\section*{What we actually get:}
- Nothing!
- Compilation with gcc 5.4 yields:
error: can't mix operands of decimal float and other float types

Let's force it:

\section*{Motivations}
```

int main() {
Decimal64 a = 0.1D;
double b = 10.25;
_Decimal64 c = -1.025D;
double d;
d = ((double) a) * b +
((double) c);
return 0;
}

```

\section*{What we would like to get:}

Something close to \(d=0.0\)

\section*{What we actually get:}
- Nothing!
- Compilation with gcc 5.4 yields:
error: can't mix operands of decimal float and other float types

Let's force it:
- the result is \(\mathrm{d}=0 \mathrm{x} 1 \mathrm{p}-52 \approx 2.2204 \cdot 10^{-16}\)

\section*{Motivations}
```

```
int main() {
```

```
int main() {
 Decimal64 a = 0.1D;
 Decimal64 a = 0.1D;
 double b = 10.25;
 double b = 10.25;
 _Decimal64 c = -1.025D;
 _Decimal64 c = -1.025D;
 double d;
 double d;
 d = ((double) a) * b +
 d = ((double) a) * b +
 ((double) c);
 ((double) c);
 return 0;
 return 0;
}
```

```
}
```

```

\section*{What we would like to get:}

Something close to \(d=0.0\)

\section*{What we actually get:}
- Nothing!
- Compilation with gcc 5.4 yields:
error: can't mix operands of decimal float and other float types

\section*{Let's force it:}
- the result is \(d=0 \mathrm{x} 1 \mathrm{p}-52 \approx 2.2204 \cdot 10^{-16}\)
- as a reminder, the smallest subnormal number is \(0 \mathrm{x} 1 \mathrm{p}-1074 \approx 4.9407 \cdot 10^{-324}\)

\section*{IEEE 754-2008 - FP formats}

Binary format
\((-1)^{s} \cdot 2^{E} \cdot m\)
\begin{tabular}{|c|c|c|}
\hline S & E & m \\
\hline \multirow{2}{*}{ bit \(W_{E}\) bits } & \\
\(\longleftrightarrow\)
\end{tabular}

Example, binary64 format:
- significand: \(2^{52} \leq m \leq 2^{53}-1\)
- exponent: \(-1074 \leq E \leq 971\) (with subnormals)

Decimal format
\((-1)^{s} \cdot 10^{F} \cdot n\)
\begin{tabular}{c|c|c|}
\hline S & F & n \\
\hline \multirow{3}{*}{\begin{tabular}{c}
bit \\
\(\longleftrightarrow\) \\
\(w+5\) bits
\end{tabular}} \\
\hline
\end{tabular}

Example, decimal64 format:
- significand: \(1 \leq n \leq 10^{16}-1\)
- exponent: \(-398 \leq F \leq 369\)
- binary BID encoding

\section*{IEEE 754-2008 - Rounding Modes}

\section*{IEEE 754-2008 - Arithmetic Operations}

\section*{Definitions and properties}
- basic arithmetic operations (,\(+ \times, \div, F M A \ldots\)...)
- exceptions and flags
- heterogenous operations
> same base, different format/precision
\(>\) e.g. binary \(32=\) binary \(32 \times\) binary 64

\section*{IEEE 754-2008 - Arithmetic Operations}

\section*{Definitions and properties}
- basic arithmetic operations \((+, \times, \div, F M A \ldots)\)
- exceptions and flags
- heterogenous operations
> same base, different format/precision
\(>\) e.g. binary \(32=\) binary \(32 \times\) binary 64

\section*{Goal: mixed-radix operations}

Enrich the IEEE 754-2008 standard with heterogenous operations in base 2 and 10.

\section*{Fused Multiply and Add}

\section*{Definition}
\[
\operatorname{FMA}(a, b, c)=\circ(a \times b+c) \quad \text { where } \circ \in\{\mathrm{RN}, \mathrm{RZ}, \mathrm{RU}, \mathrm{RD}\}
\]

\section*{Fused Multiply and Add}

\author{
Definition
}
\[
\operatorname{FMA}(a, b, c)=\circ(a \times b+c) \quad \text { where } \circ \in\{\operatorname{RN}, \mathrm{RZ}, \mathrm{RU}, \mathrm{RD}\}
\]

\section*{Why a Mixed-Radix FMA?}

\section*{Fused Multiply and Add}

\section*{Definition}
\[
\operatorname{FMA}(a, b, c)=\circ(a \times b+c) \quad \text { where } \circ \in\{\operatorname{RN}, \mathrm{RZ}, \mathrm{RU}, \mathrm{RD}\}
\]

\section*{Why a Mixed-Radix FMA?}
- correctly rounded FMA \(\Rightarrow\) correctly rounded,,\(+- \times\)

\section*{Fused Multiply and Add}

\section*{Definition}
\[
\operatorname{FMA}(a, b, c)=\circ(a \times b+c) \quad \text { where } \circ \in\{\mathrm{RN}, \mathrm{RZ}, \mathrm{RU}, \mathrm{RD}\}
\]

\section*{Why a Mixed-Radix FMA?}
- correctly rounded FMA \(\Rightarrow\) correctly rounded,,\(+- \times\)
- but also, with few more bits of precision, correctly rounded FMA \(\Rightarrow\) correctly rounded \(\div\), \(\sqrt{ }\)

\section*{Fused Multiply and Add}

\section*{Definition}
\[
\operatorname{FMA}(a, b, c)=\circ(a \times b+c) \quad \text { where } \circ \in\{\operatorname{RN}, \mathrm{RZ}, \mathrm{RU}, \mathrm{RD}\}
\]

\section*{Why a Mixed-Radix FMA?}
- correctly rounded FMA \(\Rightarrow\) correctly rounded,,\(+- \times\)
- but also, with few more bits of precision, correctly rounded FMA \(\Rightarrow\) correctly rounded \(\div\), \(\sqrt{ }\)
> assuming we can represent the midpoint between two FP-numbers

\section*{Fused Multiply and Add}

\section*{Definition}
\[
\operatorname{FMA}(a, b, c)=\circ(a \times b+c) \quad \text { where } \circ \in\{\mathrm{RN}, \mathrm{RZ}, \mathrm{RU}, \mathrm{RD}\}
\]

\section*{Why a Mixed-Radix FMA?}
- correctly rounded FMA \(\Rightarrow\) correctly rounded,,\(+- \times\)
- but also, with few more bits of precision, correctly rounded FMA \(\Rightarrow\) correctly rounded \(\div\), \(\sqrt{ }\)
> assuming we can represent the midpoint between two FP-numbers
\(>\) compromise between efficiency and implementation effort, e.g. for binary64 and decimal64 combinations:
- 5 operations,,\(+- \times, \div, \sqrt{ }\) in 20 mixed-radix versions
- 1 FMA operation in 10 versions

\section*{Mixed Radix Arithmetic}

What are the operations available in binary and decimal format?

\section*{Mixed Radix Arithmetic}

What are the operations available in binary and decimal format?
- Conversions as defined in IEEE 754

\section*{Mixed Radix Arithmetic}

\section*{What are the operations available in binary and decimal format?}
- Conversions as defined in IEEE 754
- Exact comparisons

Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L., M. Mezzarobba, J.-M. Muller [2016]
\(>\) study of the feasibility of mixed-radix comparison,
> implementation of two algorithms that have been proven and thoroughly tested,

\section*{Mixed Radix Arithmetic}

\section*{What are the operations available in binary and decimal format?}
- Conversions as defined in IEEE 754
- Exact comparisons

Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L., M. Mezzarobba, J.-M. Muller [2016]
\(>\) study of the feasibility of mixed-radix comparison,
> implementation of two algorithms that have been proven and thoroughly tested,

\section*{Goal: mixed-radix FMA}
- an emerging need for mixed-radix arithmetic
- implementation of all basic arithmetic operations with one slightly more precise FMA

\section*{Table Maker's Dilemma}

Example: consider the exact transcendental number \(y=e^{x}\) and the computed result \(\widehat{y}=\exp (x)\).

\section*{Table Maker's Dilemma}

Example: consider the exact transcendental number \(y=e^{x}\) and the computed result \(\widehat{y}=\exp (x)\).

Correct Rounding in the easy case

- enough accuracy

\section*{Table Maker's Dilemma}

Example: consider the exact transcendental number \(y=e^{x}\) and the computed result \(\widehat{y}=\exp (x)\).

Correct Rounding in the easy case

- enough accuracy

Correct Rounding in the hard case

- not enough accuracy, but how much?

\section*{Classical Binary FMA}

\section*{far-path addition}
- when \(\frac{a \times b}{c} \notin\left[\frac{1}{2}, 2\right]\)
```

Algorithm 1 Binary FMA $d=\circ(a \times b+c)$
1: if $\frac{a \times b}{c} \notin\left[\frac{1}{2}, 2\right]$ then
2: $\quad \mathrm{d}=$ farpath_addition $(a \times b, c)$
else
4: $\quad \mathrm{d}=$ nearpath_subtraction $(a \times b, c)$
5: end if

```

\section*{Mixed-Radix Inexact Cancellation Cases}
near-path subtraction is INEXACT!
- at a certain precision
- cannot compute the result with enough accuracy for correct rounding

\section*{Mixed-Radix Inexact Cancellation Cases}
near-path subtraction is INEXACT!
- at a certain precision
- cannot compute the result with enough accuracy for correct rounding
far-path addition is not always exact!
- no simple sticky bit

\section*{Mixed-Radix Inexact Cancellation Cases}
near-path subtraction is INEXACT!
- at a certain precision
- cannot compute the result with enough accuracy for correct rounding
far-path addition is not always exact!
- no simple sticky bit

\section*{Obervation}

Mixed-radix addition almost always inexact.

\section*{Overcoming the TDM}

Obervations
- 10 is divisible by 2
- at a certain precision, binary to decimal conversion becomes exact.

\section*{Overcoming the TDM}

\section*{Obervations}
- 10 is divisible by 2
- at a certain precision, binary to decimal conversion becomes exact.

\section*{Mixed-Radix unified format}
binary64 and decimal64 formats can be unified as
\(2^{J} \cdot 5^{K} \cdot r\)
with \(2^{54} \leq|r|<2^{55} ; r \in \mathbb{Z}\)
\(-1130 \leq J \leq 969 ;-421 \leq K \leq 385 ;\)
\(J, K \in \mathbb{Z}\).

\section*{Overcoming the TDM}

\section*{Obervations}
- 10 is divisible by 2
- at a certain precision, binary to decimal conversion becomes exact.

\section*{Mixed-Radix unified format}
binary64 and decimal64 formats can be unified as \(2^{J} \cdot 5^{K} \cdot r\)
with \(2^{54} \leq|r|<2^{55} ; r \in \mathbb{Z}\)
\(-1130 \leq J \leq 969 ;-421 \leq K \leq 385 ;\)
\(J, K \in \mathbb{Z}\).

\section*{Bound on the worst case of cancellation}
- occurs when \((a \times b)-c\) is relatively small
- if \(a \times b=2^{L} \cdot 5^{M} \cdot s\) and \(c=2^{N} \cdot 5^{P} \cdot t\)
\[
\left|\frac{S}{t}-2^{N-L} \cdot 5^{P-M}\right| \geq \eta=2^{-177.61}
\]
- computed using one sided approximations

\section*{Performances issues of this exact addition}

\section*{Size of the accumulator}
- acutal computation \(\alpha=(a \times b)+c-f\)
- \(\mathrm{a}, \mathrm{b}\) and c inputs of the FMA, \((a \times b)\) the exact multiplication bounded into the internal mixed-radix format
- f the closest midpoint bounded into the internal mixed-radix format
- We are sure that we can compute \(\alpha\) and store it on 4225 bits, that is 67 words of 64 bits, leaving 63 "free" bits.

\section*{Performances issues of this exact addition}

\section*{Size of the accumulator}
- acutal computation \(\alpha=(a \times b)+c-f\)
- \(\mathrm{a}, \mathrm{b}\) and c inputs of the FMA, \((a \times b)\) the exact multiplication bounded into the internal mixed-radix format
- f the closest midpoint bounded into the internal mixed-radix format
- We are sure that we can compute \(\alpha\) and store it on 4225 bits, that is 67 words of 64 bits, leaving 63 "free" bits.

\section*{Obervation}

In a lot of cases, a quick and not so accurate addition can be enough to perform correct rounding in the output format.

\section*{FMA Mixed Radix Algorithm}
```

Algorithm 2 Mixed-Radix FMA $d=\circ(a \times b+c)$
Multiplication $\psi \leftarrow a \times b$
if it is an "addition" or $\frac{\psi}{c} \notin\left[\frac{1}{2} ; 2\right]$ then
$\phi \leftarrow$ "far-path" binary addition
else
$\phi \leftarrow$ "near-path" binary subtraction
end if
$\rho \leftarrow$ Conversion of $\phi$ to the output format
if $\rho$ can round correctly then
return $d \leftarrow \rho$ correctly rounded to output format
else
Compute integer rounding boundary significand $f$
$\alpha \leftarrow$ Exact decimal addition
Correct $\rho$ using $f$ and the sign of $\alpha$
return $d \leftarrow \rho$ correctly rounded to output format
end if

```

\section*{Test Environment and Reference implementations}

\section*{Test Environment}
- Intel i7-7500U quad-core processor
- clocked at maximally 2.7 GHz
- running Debian/GNU Linux 4.9.0-5 in x86-64 mode

\section*{Test Environment and Reference implementations}

\section*{Test Environment}
- Intel i7-7500U quad-core processor
- clocked at maximally 2.7 GHz
- running Debian/GNU Linux 4.9.0-5 in x86-64 mode

\section*{GNU Multiple Precision Library (GMP)}
- mixed-radix FMA designed in a limited timeframe
- using GMP rational numbers
- Goal: reasonabely fast but easy to design

\section*{Sollya}
- exact representation of numerical expressions
- evaluated at any precision without spurious rounding

\section*{Performance Testing}

Our implementation

GMP reference implementation

\section*{Conclusion and Perspectives}

\section*{Correctly Rounded Mixed-Radix FMA}
- two formats: binary64 and decimal64
- pen and paper proof of the algorithm
- overcoming the TDM and worst case of cancellation in the mixed-radix case
- implementation faster than expected and extensively tested

\section*{Going further}
- more formats!
- mixed-radix FMA of heterogenous precision

\title{
Thank you! Questions?
}```

