

A CORRECTLY ROUNDED MIXED-RADIX FUSED-MULTIPLY-ADD

ARITH25 - Amherst, USA June 25th, 2018

Clothilde Jeangoudoux and Christoph Lauter

clothilde.jeangoudoux@lip6.fr, christoph.lauter@lip6.fr

Sorbonne Université, CNRS, LIP6 UMR 7606


```
int main() {
   _Decimal64 a = 0.1D;
   double b = 10.25;
   _Decimal64 c = -1.025D;
   double d;
   d = a * b + c;

return 0;
}
```


What we would like to get:

```
Something close to d = 0.0
```

```
int main() {
   _Decimal64 a = 0.1D;
   double b = 10.25;
   _Decimal64 c = -1.025D;
   double d;
   d = a * b + c;

return 0;
```



```
int main() {
   _Decimal64 a = 0.1D;
   double b = 10.25;
   _Decimal64 c = -1.025D;
   double d;
   d = a * b + c;

return 0;
}
```

What we would like to get:

Something close to d = 0.0

What we actually get:

Nothing!


```
int main() {
   _Decimal64 a = 0.1D;
   double b = 10.25;
   _Decimal64 c = -1.025D;
   double d;
   d = a * b + c;

return 0;
}
```

What we would like to get:

Something close to d = 0.0

What we actually get:

- Nothing!
- Compilation with gcc 5.4 yields: error: can't mix operands of decimal float and other float types

What we would like to get:

Something close to d = 0.0

What we actually get:

- Nothing!
- Compilation with gcc 5.4 yields: error: can't mix operands of decimal float and other float types

Let's force it:

What we would like to get:

Something close to d = 0.0

What we actually get:

- Nothing!
- Compilation with gcc 5.4 yields: error: can't mix operands of decimal float and other float types

Let's force it:

• the result is $d = 0x1p - 52 \approx 2.2204 \cdot 10^{-16}$

What we would like to get:

Something close to d = 0.0

What we actually get:

- Nothing!
- Compilation with gcc 5.4 yields: error: can't mix operands of decimal float and other float types

Let's force it:

- the result is $d = 0x1p 52 \approx 2.2204 \cdot 10^{-16}$
- \bullet as a reminder, the smallest subnormal number is 0x1p 1074 $\approx 4.9407 \cdot 10^{-324}$

IEEE 754-2008 - FP formats

Binary format

$$(-1)^{s} \cdot 2^{E} \cdot m$$

Example, binary64 format:

- significand: $2^{52} \le m \le 2^{53} 1$
- exponent: $-1074 \le E \le 971$ (with subnormals)

Decimal format

$$(-1)^s \cdot 10^F \cdot n$$

Example, decimal64 format:

- ♦ significand: $1 \le n \le 10^{16} 1$
- ♦ exponent: $-398 \le F \le 369$
- binary BID encoding

IEEE 754-2008 - Arithmetic Operations

Definitions and properties

- basic arithmetic operations $(+, \times, \div, FMA...)$
- exceptions and flags
- heterogenous operations
 - > same base, different format/precision
 - > e.g. binary32 \times binary64

IEEE 754-2008 - Arithmetic Operations

Definitions and properties

- basic arithmetic operations $(+, \times, \div, FMA...)$
- exceptions and flags
- heterogenous operations
 - > same base, different format/precision
 - > e.g. binary32 = binary32 \times binary64

Goal: mixed-radix operations

Enrich the IEEE 754-2008 standard with heterogenous operations in base 2 and 10.

Definition

$$\texttt{FMA}(a,b,c) = \circ (a \times b + c)$$

 $\mathtt{where} \, \circ \in \{\mathtt{RN}, \mathtt{RZ}, \mathtt{RU}, \mathtt{RD}\}$

Definition

$$\texttt{FMA}(a,b,c) = \circ (a \times b + c)$$

 $\mathtt{where} \, \circ \in \{\mathtt{RN}, \mathtt{RZ}, \mathtt{RU}, \mathtt{RD}\}$

Definition

$$\texttt{FMA}(a,b,c) = \circ (a \times b + c)$$

 $\mathtt{where} \, \circ \in \{\mathtt{RN}, \mathtt{RZ}, \mathtt{RU}, \mathtt{RD}\}$

Why a Mixed-Radix FMA?

• correctly rounded FMA \Rightarrow correctly rounded $+, -, \times$

Definition

$$\texttt{FMA}(a,b,c) = \circ (a \times b + c)$$

 $\mathtt{where} \, \circ \in \{\mathtt{RN}, \mathtt{RZ}, \mathtt{RU}, \mathtt{RD}\}$

- correctly rounded FMA \Rightarrow correctly rounded $+, -, \times$
- lacktriangledown but also, with few more bits of precision, correctly rounded FMA \Rightarrow correctly rounded $\div,\sqrt{\ }$

Definition

$$\texttt{FMA}(a,b,c) = \circ (a \times b + c)$$

 $\mathtt{where} \, \circ \in \{\mathtt{RN}, \mathtt{RZ}, \mathtt{RU}, \mathtt{RD}\}$

- correctly rounded FMA \Rightarrow correctly rounded $+, -, \times$
- lacktriangle but also, with few more bits of precision, correctly rounded FMA \Rightarrow correctly rounded $\div,\sqrt{\ }$
 - > assuming we can represent the midpoint between two FP-numbers

Definition

$$\texttt{FMA}(a,b,c) = \circ (a \times b + c)$$

 $\mathtt{where} \, \circ \in \{\mathtt{RN}, \mathtt{RZ}, \mathtt{RU}, \mathtt{RD}\}$

- correctly rounded FMA \Rightarrow correctly rounded $+, -, \times$
- lacktriangled but also, with few more bits of precision, correctly rounded FMA \Rightarrow correctly rounded $\div,\sqrt{\ }$
 - > assuming we can represent the midpoint between two FP-numbers
 - compromise between efficiency and implementation effort, e.g. for binary64 and decimal64 combinations:
 - 5 operations $+,-,\times,\div,\sqrt{}$ in 20 mixed-radix versions
 - 1 FMA operation in 10 versions

What are the operations available in binary and decimal format?

What are the operations available in binary and decimal format?

Conversions as defined in IEEE 754

What are the operations available in binary and decimal format?

- Conversions as defined in IEEE 754
- Exact comparisons
 Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L.,
 M. Mezzarobba, J.-M. Muller [2016]
 - > study of the feasibility of mixed-radix comparison,
 - > implementation of two algorithms that have been proven and thoroughly tested,

What are the operations available in binary and decimal format?

- Conversions as defined in IEEE 754
- Exact comparisons
 Comparison between binary and decimal floating-point numbers, N. Brisebarre, C. L.,
 M. Mezzarobba, J.-M. Muller [2016]
 - > study of the feasibility of mixed-radix comparison,
 - > implementation of two algorithms that have been proven and thoroughly tested,

Goal: mixed-radix FMA

- an emerging need for mixed-radix arithmetic
- implementation of all basic arithmetic operations with one slightly more precise FMA

Table Maker's Dilemma

Example: consider the exact transcendental number $y = e^x$ and the computed result $\hat{y} = \exp(x)$.

Table Maker's Dilemma

Example: consider the exact transcendental number $y = e^x$ and the computed result $\hat{y} = \exp(x)$.

Correct Rounding in the easy case

enough accuracy

Table Maker's Dilemma

Example: consider the exact transcendental number $y = e^x$ and the computed result $\hat{y} = \exp(x)$.

Correct Rounding in the easy case

enough accuracy

Correct Rounding in the hard case

not enough accuracy, but how much?

Classical Binary FMA

Algorithm 1 Binary FMA $d = \circ(a \times b + c)$

1: if $\frac{a \times b}{c} \not\in \left[\frac{1}{2}, 2\right]$ then

2: $d = farpath_addition(a \times b, c)$

3: else

4: $d = nearpath_subtraction(a \times b, c)$

5: end if

far-path addition

- when $\frac{a \times b}{c} \not\in \left[\frac{1}{2}, 2\right]$
- simple logic with sticky guard bit

near-path subtraction

- when $\frac{a \times b}{c} \in \left[\frac{1}{2}, 2\right]$
- ◆ Sterbenz's lemma: (a × b) c is exactly representable

Mixed-Radix Inexact Cancellation Cases

near-path subtraction is INEXACT!

- at a certain precision
- cannot compute the result with enough accuracy for correct rounding

Mixed-Radix Inexact Cancellation Cases

near-path subtraction is INEXACT!

- at a certain precision
- cannot compute the result with enough accuracy for correct rounding

far-path addition is not always exact!

no simple sticky bit

Mixed-Radix Inexact Cancellation Cases

near-path subtraction is INEXACT!

- at a certain precision
- cannot compute the result with enough accuracy for correct rounding

far-path addition is not always exact!

no simple sticky bit

Obervation

Mixed-radix addition almost always inexact.

Overcoming the TDM

Obervations

- 10 is divisible by 2
- at a certain precision, binary to decimal conversion becomes exact.

Overcoming the TDM

Obervations

- 10 is divisible by 2
- at a certain precision, binary to decimal conversion becomes exact.

Mixed-Radix unified format

binary64 and decimal64 formats can be unified as

$$2^J \cdot 5^K \cdot r$$

with
$$2^{54} \le |r| < 2^{55}; \ r \in \mathbb{Z}$$

$$-1130 \le J \le 969; -421 \le K \le 385;$$

$$J, K \in \mathbb{Z}$$
.

Overcoming the TDM

Obervations

- 10 is divisible by 2
- at a certain precision, binary to decimal conversion becomes exact.

Mixed-Radix unified format

binary64 and decimal64 formats can be unified as $2^J \cdot 5^K \cdot r$

with
$$2^{54} \le |r| < 2^{55}$$
; $r \in \mathbb{Z}$

$$-1130 \le J \le 969; -421 \le K \le 385;$$

 $J, K \in \mathbb{Z}$.

Bound on the worst case of cancellation

- occurs when $(a \times b) c$ is relatively small
- if $\mathbf{a} \times \mathbf{b} = 2^{L} \cdot 5^{M} \cdot \mathbf{s}$ and $\mathbf{c} = 2^{N} \cdot 5^{P} \cdot \mathbf{t}$ $\left| \frac{\mathbf{s}}{\mathbf{t}} 2^{N-L} \cdot 5^{P-M} \right| \ge \eta = 2^{-177.61}$
- computed using one sided approximations

Performances issues of this exact addition

Size of the accumulator

- acutal computation $\alpha = (a \times b) + c f$
- a, b and c inputs of the FMA, (a × b) the exact multiplication bounded into the internal mixed-radix format
- f the closest midpoint bounded into the internal mixed-radix format
- lacktriangle We are sure that we can compute lpha and store it on 4225 bits, that is 67 words of 64 bits, leaving 63 "free" bits.

Performances issues of this exact addition

Size of the accumulator

- acutal computation $\alpha = (a \times b) + c f$
- a, b and c inputs of the FMA, (a × b) the exact multiplication bounded into the internal mixed-radix format
- f the closest midpoint bounded into the internal mixed-radix format
- lacktriangle We are sure that we can compute lpha and store it on 4225 bits, that is 67 words of 64 bits, leaving 63 "free" bits.

Obervation

In a lot of cases, a quick and not so accurate addition can be enough to perform correct rounding in the output format.

FMA Mixed Radix Algorithm

Algorithm 2 Mixed-Radix FMA $d = \circ (a \times b + c)$

- 1: Multiplication $\psi \leftarrow a \times b$
- 2: **if** it is an "addition" or $\frac{\psi}{c} \notin \left[\frac{1}{2}; 2\right]$ **then**
- 3: $\phi \leftarrow$ "far-path" binary addition
- 4: else
- $\phi \leftarrow$ "near-path" binary subtraction
- 6: end if
- 7: $\rho \leftarrow$ Conversion of ϕ to the output format
- B: **if** ho can round correctly **then**
- 9: **return** $d \leftarrow \rho$ correctly rounded to output format
- 10: **else**
- 11: Compute integer rounding boundary significand f
- 12: $\alpha \leftarrow \mathsf{Exact} \; \mathsf{decimal} \; \mathsf{addition}$
- 13: Correct ρ using f and the sign of α
- 14: **return** $d \leftarrow \rho$ correctly rounded to output format
- 15: **end if**

Test Environment and Reference implementations

Test Environment

- ◆ Intel i7-7500U quad-core processor
- clocked at maximally 2.7GHz
- running Debian/GNU Linux 4.9.0-5 in x86-64 mode

Test Environment and Reference implementations

Test Environment

- ◆ Intel i7-7500U quad-core processor
- clocked at maximally 2.7GHz
- running Debian/GNU Linux 4.9.0-5 in x86-64 mode

GNU Multiple Precision Library (GMP)

- mixed-radix FMA designed in a limited timeframe
- using GMP rational numbers
- Goal: reasonabely fast but easy to design

Sollya

- exact representation of numerical expressions
- evaluated at any precision without spurious rounding

Performance Testing

Our implementation

GMP reference implementation

Conclusion and Perspectives

Correctly Rounded Mixed-Radix FMA

- two formats: binary64 and decimal64
- pen and paper proof of the algorithm
- overcoming the TDM and worst case of cancellation in the mixed-radix case
- implementation faster than expected and extensively tested

Going further

- more formats!
- mixed-radix FMA of heterogenous precision

Thank you! Questions?

