## On various ways to split a floating-point number

Claude-Pierre Jeannerod Jean-Michel Muller Paul Zimmermann Inria, CNRS, ENS Lyon, Université de Lyon, Université de Lorraine France

ARITH-25
June 2018



## Splitting a floating-point number



All products are computed exactly with one FP multiplication (Dekker product)

$$
\sqrt{a^{2}+b^{2}} \rightarrow 2^{k} \sqrt{\left(\frac{a}{2^{k}}\right)^{2}+\left(\frac{b}{2^{k}}\right)^{2}}
$$

Dekker product (1971)

## Splitting a floating-point number



In each "bin", the sum is computed exactly

- Matlab program in a paper by Zielke and Drygalla (2003),
- analysed and improved by Rump, Ogita, and Oishi (2008),
- reproducible summation, by Demmel \& Nguyen.
- absolute splittings (e.g., $\lfloor x\rfloor$ ), vs relative splittings (e.g., most significant bits, splitting of the significands for multiplication);
- no bit manipulations of the binary representations (would result in less portable programs) $\rightarrow$ only FP operations.


## Notation and preliminary definitions

- IEEE-754 compliant FP arithmetic with radix $\beta$, precision $p$, and extremal exponents $e_{\text {min }}$ and $e_{\text {max }}$;
- $\mathbb{F}=$ set of FP numbers. $x \in \mathbb{F}$ can be written

$$
x=\left(\frac{M}{\beta^{p-1}}\right) \cdot \beta^{e}
$$

$M, e \in \mathbb{Z}$, with $|M|<\beta^{p}$ and $e_{\min } \leqslant e \leqslant e_{\max }$, and $|M|$ maximum under these constraints;

- significand of $x: M \cdot \beta^{-p+1}$;
- $\mathrm{RN}=$ rounding to nearest with some given tie-breaking rule (assumed to be either "to even" or "to away", as in IEEE 754-2008);


## Notation and preliminary definitions

Definition 1 (classical ulp)
The unit in the last place of $t \in \mathbb{R}$ is

$$
\operatorname{ulp}(t)= \begin{cases}\beta^{\log _{\beta}|t| J-p+1} & \text { if }|t| \geqslant \beta^{e_{\min }} \\ \beta^{e_{\min }-p+1} & \text { otherwise }\end{cases}
$$

Definition 2 (ufp)
The unit in the first place of $t \in \mathbb{R}$ is

$$
u f p(t)= \begin{cases}\beta^{\left\lfloor\log _{\beta}|t|\right\rfloor} & \text { if } t \neq 0 \\ 0 & \text { if } t=0\end{cases}
$$

(introduced by Rump, Ogita and Oishi in 2007)

## Notation and preliminary definitions



Guiding thread of the talk: catastrophic cancellation is your friend.

## Absolute splittings: 1. nearest integer

Uses a constant $C$. Same operations as Fast2Sum, yet different assumptions.

## Algorithm 1

Require: $C, x \in \mathbb{F}$

$$
\begin{aligned}
& s \leftarrow \operatorname{RN}(C+x) \\
& x_{h} \leftarrow \operatorname{RN}(s-C) \quad \\
& \left.x_{\ell} \leftarrow \operatorname{RN}\left(x-x_{h}\right) \quad \text { \{optional }\right\} \\
& \text { return } \quad x_{h}\left\{\text { or }\left(x_{h}, x_{\ell}\right)\right\}
\end{aligned}
$$



## Absolute splittings: 2. floor function

An interesting question is to compute $\lfloor x\rfloor$, or more generally $\left\lfloor x / \beta^{k}\right\rfloor$.

```
Algorithm 2
Require: }x\in\mathbb{F
    y\leftarrowRN(x-0.5)
    C}\leftarrow\textrm{RN}(\mp@subsup{\beta}{}{p}-x
    s\leftarrowRN(C+y)
    xh}\leftarrow\textrm{RN}(s-C
    return xh
```

Theorem 4
Assume $\beta$ is even, $x \in \mathbb{F}, 0 \leqslant x \leqslant \beta^{p-1}$. Then Algorithm 2 returns
$x_{h}=\lfloor x\rfloor$.

## Relative splittings

- expressing a precision- $p$ FP number $x$ as the exact sum of a $(p-s)$-digit number $x_{h}$ and an $s$-digit number $x_{\ell}$;
- first use with $s=\lfloor p / 2\rfloor$ (Dekker product, 1971)
- another use: $s=p-1 \rightarrow x_{h}$ is a power of $\beta$ giving the order of magnitude of $x$. Two uses:
- evaluate $u l p(x)$ or $u f p(x)$. Useful functions in the error analysis of FP algorithms;


## Relative splittings

- expressing a precision- $p$ FP number $x$ as the exact sum of a $(p-s)$-digit number $x_{h}$ and an $s$-digit number $x_{\ell}$;
- first use with $s=\lfloor p / 2\rfloor$ (Dekker product, 1971)
- another use: $s=p-1 \rightarrow x_{h}$ is a power of $\beta$ giving the order of magnitude of $x$. Two uses:
- evaluate $u \operatorname{lp}(x)$ or $u f p(x)$. Useful functions in the error analysis of FP algorithms;
$\rightarrow$ exact information


## Relative splittings

- expressing a precision- $p$ FP number $x$ as the exact sum of a $(p-s)$-digit number $x_{h}$ and an s-digit number $x_{\ell}$;
- first use with $s=\lfloor p / 2\rfloor$ (Dekker product, 1971)
- another use: $s=p-1 \rightarrow x_{h}$ is a power of $\beta$ giving the order of magnitude of $x$. Two uses:
- evaluate $u \operatorname{lp}(x)$ or $u f p(x)$. Useful functions in the error analysis of FP algorithms;
$\rightarrow$ exact information
- power of $\beta$ close to $|x|$ : for scaling $x$, such a weaker condition suffices, and can be satisfied using fewer operations.


## Relative splittings

- expressing a precision- $p$ FP number $x$ as the exact sum of a $(p-s)$-digit number $x_{h}$ and an $s$-digit number $x_{\ell}$;
- first use with $s=\lfloor p / 2\rfloor$ (Dekker product, 1971)
- another use: $s=p-1 \rightarrow x_{h}$ is a power of $\beta$ giving the order of magnitude of $x$. Two uses:
- evaluate $u \operatorname{lp}(x)$ or $u f p(x)$. Useful functions in the error analysis of FP algorithms;
$\rightarrow$ exact information
- power of $\beta$ close to $|x|$ : for scaling $x$, such a weaker condition suffices, and can be satisfied using fewer operations.
$\rightarrow$ approximate information


## Veltkamp splitting

$x \in \mathbb{F}$ and $s<p \rightarrow$ two FP numbers $x_{h}$ and $x_{\ell}$ s.t. $x=x_{h}+x_{\ell}$, with the significand of $x_{h}$ fitting in $p-s$ digits, and the one of $x_{\ell}$ in $s$ digits ( $s-1$ when $\beta=2$ and $s \geqslant 2$ ).

Algorithm 3 Veltkamp's splitting.
Require: $C=\beta^{s}+1$ and $x$ in $\mathbb{F}$
$\gamma \leftarrow \operatorname{RN}(C x)$
$\delta \leftarrow \operatorname{RN}(x-\gamma)$
$x_{h} \leftarrow \operatorname{RN}(\gamma+\delta)$
$x_{\ell} \leftarrow \operatorname{RN}\left(x-x_{h}\right)$
return $\left(x_{h}, x_{\ell}\right)$

Remember: catastrophic cancellation is your friend!


- Dekker (1971): radix 2 analysis, implicitly assuming no overflow;
- extended to any radix $\beta$ by Linnainmaa (1981);
- works correctly even in the presence of underflows;
- Boldo (2006): Cx does not overflow $\Rightarrow$ no other operation overflows.


## Veltkamp splitting: FMA variant

If an FMA instruction is available, we suggest the following variant, that requires fewer operations.

Algorithm 4 FMA-based relative splitting.

Require: $C=\beta^{s}+1$ and $x$ in $\mathbb{F}$ $\gamma \leftarrow \operatorname{RN}(C x)$
$x_{h} \leftarrow \operatorname{RN}\left(\gamma-\beta^{s} x\right)$
$x_{\ell} \leftarrow \operatorname{RN}(C x-\gamma)$
return $\left(x_{h}, x_{\ell}\right)$

## Remarks

- $x_{\ell}$ obtained in parallel with $x_{h}$
- even without an FMA, $\gamma$ and $\beta^{s} x$ can be computed in parallel,
- the bounds on the numbers of digits of $x_{h}$ and $x_{\ell}$ given by
Theorem 5 can be attained.


## Theorem 5

Let $x \in \mathbb{F}$ and $s \in \mathbb{Z}$ s.t. $1 \leqslant s<p$. Barring underflow and overflow, Algorithm 4 computes $x_{h}, x_{\ell} \in \mathbb{F}$ s.t. $x=x_{h}+x_{\ell}$. If $\beta=2$, the significands of $x_{h}$ and $x_{\ell}$ have at most $p-s$ and $s$ bits, respectively. If $\beta>2$ then they have at most $p-s+1$ and $s+1$ digits, respectively.

## Extracting a single bit (radix 2)

- computing ufp $(x)$ or ulp $(x)$, or scaling $x$;
- Veltkamp's splitting (Algorithm 3) to $x$ with $s=p-1$ : the resulting $x_{h}$ has a 1-bit significand and it is nearest $x$ in precision $p-s=1$.
- For computing $\operatorname{sign}(x) \cdot u f p(x)$, we can use the following algorithm, introduced by Rump (2009).


## Algorithm 5

Require: $\beta=2, \varphi=2^{p-1}+1, \psi=$
$1-2^{-p}$, and $x \in \mathbb{F}$
$q \leftarrow \operatorname{RN}(\varphi x)$
$r \leftarrow \operatorname{RN}(\psi q)$
$\delta \leftarrow \operatorname{RN}(q-r)$
return $\delta$

Very rough explanation:

- $q \approx 2^{p-1} x+x$
- $r \approx 2^{p-1} x$
$\rightarrow q-r \approx x$ but in the massive cancellation we loose all bits but the most significant.


## Extracting a single bit (radix 2)

These solutions raise the following issues.

- If $|x|$ is large, then an overflow can occur in the first line of both Algorithms 3 and 5.
- To avoid overflow in Algorithm 5: scale it by replacing $\varphi$ by $\frac{1}{2}+2^{-p}$ and returning $2^{p} \delta$ at the end. However, this variant will not work for subnormal $x$.
$\rightarrow$ to use Algorithm 5, we somehow need to check the order of magnitude of $x$.
- If we are only interested in scaling $x$, then requiring the exact value of $\operatorname{ufp}(x)$ is overkill: one can get a power of 2 "close" to $x$ with a cheaper algorithm.


## Extracting a single bit (radix 2)

Algorithm $6 \operatorname{sign}(x) \cdot u \operatorname{lp}(x)$ for radix 2 and $|x|>2^{e_{\text {min }}}$.
Require: $\beta=2, \psi=1-2^{-p}$, and $x \in \mathbb{F}$
$a \leftarrow \operatorname{RN}(\psi x)$
$\delta \leftarrow \operatorname{RN}(x-a)$
return $\delta$

Theorem 6
If $|x|>2^{e_{\min }}$, then Algorithm 6 returns

$$
\operatorname{sign}(x) \cdot \begin{cases}\frac{1}{2} \operatorname{ulp}(x) & \text { if }|x| \text { is a power of } 2, \\ \operatorname{ulp}(x) & \text { otherwise. }\end{cases}
$$

Similar algorithm for $\operatorname{ufp}(x)$, under the condition $|x|<2^{e_{\max }-p+1}$.

## Underflow-safe and almost overflow-free scaling

- $\beta=2, p \geqslant 4$;
- RN breaks ties "to even" or "to away";

Given a nonzero FP number $x$, compute a scaling factor $\delta$ s.t.:

- $|x| / \delta$ is much above the underflow threshold and much below the overflow threshold (so that, for example, we can safely square it);
- $\delta$ is an integer power of $2(\rightarrow$ no rounding errors when multiplying or dividing by it).
Algorithms proposed just before: simple, but underflow or overflow can occur for many inputs $x$.


## Underflow-safe and almost overflow-free scaling

Following algorithm: underflow-safe and almost overflow-free in the sense that only the two extreme values $x= \pm\left(2-2^{1-p}\right) \cdot 2^{e_{\max }}$ must be excluded.

```
Algorithm 7
Require: }\beta=2,\Phi=\mp@subsup{2}{}{-p}+\mp@subsup{2}{}{-2p+1},\eta=\mp@subsup{2}{}{\mp@subsup{e}{\operatorname{min}}{}-p+1}\mathrm{ , and }x\in\mathbb{F
    y\leftarrow|x|
    e\leftarrowRN(\Phiy+\eta) {or e\leftarrowRN(RN(\Phiy)+\eta) without FMA}
    ysup
    \delta\leftarrowRN(ysup - y)
    return \delta
```


## Underflow-safe and almost overflow-free scaling

First 3 lines of Algorithm 7: algorithm due to Rump, Zimmermann, Boldo and Melquiond, that computes the FP successor of $x \notin\left[2^{e_{\min }}, 2^{e_{\min }+2}\right]$. We have,

## Theorem 7

For $x \in \mathbb{F}$ with $|x| \neq\left(2-2^{1-p}\right) \cdot 2^{e_{\max }}$, the value $\delta$ returned by Algorithm 7 satisfies:

- if RN is with "ties to even" then $\delta$ is a power of 2;
- if RN is with "ties to away" then $\delta$ is a power of 2 , unless

$$
|x|=2^{e_{\min }+1}-2^{e_{\min }-p+1} \text {, in which case it equals } 3 \cdot 2^{e_{\min }-p+1} \text {; }
$$

- if $x \neq 0$, then

$$
1 \leqslant\left|\frac{x}{\delta}\right| \leqslant 2^{p}-1
$$

$\rightarrow$ makes $\delta$ a good candidate for scaling $x$;
$\rightarrow$ in the paper: application to $\sqrt{a^{2}+b^{2}}$.

## Experimental results

Although we considered floating-point operations only, we can compare with bit-manipulations.

The C programs we used are publicly available (see proceedings).
Experimental setup: Intel i5-4590 processor, Debian testing, GCC 7.3.0 with -O3 optimization level, FPU control set to rounding to double.

Computation of round or floor:

|  | round | floor |
| :---: | :---: | :---: |
| Algorithms 1 and 2 | $\mathbf{0 . 1 0 6 s}$ | $\mathbf{0 . 1 7 3 s}$ |
| Bit manipulation | 0.302 s | 0.203 s |
| GNU libm rint and floor | 0.146 s | 0.209 s |

Note: Algorithms 1 and 2 require $|x| \leqslant 2^{51}$ and $0 \leqslant x \leqslant 2^{52}$ respectively.

## Relative splitting of a double-precision number

Splitting into $x_{h}$ and $x_{\ell}$ :

|  | $x_{h}$ | $x_{\ell}$ | time |
| :---: | :---: | :---: | :---: |
| Algorithm 3 | 26 bits | 26 bits | 0.108 s |
| Algorithm 4 | 26 bits | 27 bits | 0.106 s |
| Algorithm 4 with FMA | 26 bits | 27 bits | 0.108 s |
| Bit manipulation | 26 bits | 27 bits | $\mathbf{0 . 0 9 5 s}$ |

Algorithms 3 and 4 assume no intermediate overflow or underflow.

## Conclusion

- systematic review of splitting algorithms
- found some new algorithms, in particular with FMA
- many applications for absolute and relative splitting
- in their application range, these algorithms are competitive with (less-portable) bit-manipulation algorithms


## Motivation

Question of Pierrick Gaudry (Caramba team, Nancy, France):
Multiple-precision integer arithmetic in Javascript.
Javascript has only a 32-bit integer type, but 53-bit doubles!
Storing 16-bit integers in a double precision register, we can accumulate up to $2^{21}$ products of 32 bits, and then have to perform floor ( $\mathrm{x} / 65536.0$ ) to normalize.

The Javascript code Math.Floor ( $\mathrm{x} / 65536.0$ ) is slow on old internet browsers (Internet Explorer version 7 or 8 )!

The Javascript standard says it is IEEE754, with always round to nearest, ties to even.

Pierrick Gaudry then opened the "Handbook of Floating-Point Arithmetic" ...

First algorithm (designed by Pierrick Gaudry):
Assume $0 \leqslant x<2^{36}$ and $x$ is an integer
We can compute floor ( x ) as follows:
Let $C=2^{36}-2^{-1}+2^{-17}$.
$s \leftarrow \operatorname{RN}(C+x)$
Return $\mathrm{RN}(s-C)$
Question: can we get rid of the condition "x integer"?

