On various ways to split a floating-point number

Claude-Pierre Jeannerod Jean-Michel Muller Paul Zimmermann Inria, CNRS, ENS Lyon, Université de Lyon, Université de Lorraine France

> ARITH-25 June 2018

1-

Splitting a floating-point number

Dekker product (1971)

-2-

Splitting a floating-point number

- Matlab program in a paper by Zielke and Drygalla (2003),
- analysed and improved by Rump, Ogita, and Oishi (2008),
- reproducible summation, by Demmel & Nguyen.

- absolute splittings (e.g., \[\[\x \] \]),
 vs relative splittings (e.g., most significant bits, splitting of the significands for multiplication);
- no bit manipulations of the binary representations (would result in less portable programs) → only FP operations.

-3-

Notation and preliminary definitions

- IEEE-754 compliant FP arithmetic with radix β , precision p, and extremal exponents e_{\min} and e_{\max} ;
- $\mathbb{F} = \text{set of FP numbers. } x \in \mathbb{F} \text{ can be written}$

$$x = \left(\frac{M}{\beta^{p-1}}\right) \cdot \beta^e,$$

M, $e \in \mathbb{Z}$, with $|M| < \beta^p$ and $e_{\min} \leqslant e \leqslant e_{\max}$, and |M| maximum under these constraints;

- significand of x: $M \cdot \beta^{-p+1}$;
- RN = rounding to nearest with some given tie-breaking rule (assumed to be either "to even" or "to away", as in IEEE 754-2008);

-4-

Notation and preliminary definitions

Definition 1 (classical ulp)

The unit in the last place of $t \in \mathbb{R}$ is

$$\mathsf{ulp}(t) = egin{cases} eta^{\lfloor \log_eta |t| \rfloor - p + 1} & \mathsf{if} \ |t| \geqslant eta^{\mathbf{e}_{\min}}, \ eta^{\mathbf{e}_{\min} - p + 1} & \mathsf{otherwise}. \end{cases}$$

Definition 2 (ufp)

The unit in the first place of $t \in \mathbb{R}$ is

$$\mathsf{ufp}(t) = egin{cases} eta^{\lfloor \log_eta \mid t \mid \rfloor} & \mathsf{if} \ t
eq 0, \ 0 & \mathsf{if} \ t = 0. \end{cases}$$

(introduced by Rump, Ogita and Oishi in 2007)

-5-

Notation and preliminary definitions

Guiding thread of the talk: catastrophic cancellation is your friend.

-6-

Absolute splittings: 1. nearest integer

Uses a constant C. Same operations as Fast2Sum, yet different assumptions.

Algorithm 1

Require:
$$C, x \in \mathbb{F}$$
 $s \leftarrow RN(C + x)$
 $x_h \leftarrow RN(s - C)$
 $x_\ell \leftarrow RN(x - x_h)$ {optional}
return x_h {or (x_h, x_ℓ) }

First occurrence we found: Hecker (1996) in radix 2 with $C = 2^{p-1}$ or $C = 2^{p-1} + 2^{p-2}$. Use of latter constant referred to as the 1.5 trick.

Theorem 3

Assume C integer with $\beta^{p-1} \leqslant C \leqslant \beta^p$. If $\beta^{p-1} - C \leqslant x \leqslant \beta^p - C$, then x_h is an integer such that $|x - x_h| \leqslant 1/2$. Furthermore, $x = x_h + x_\ell$.

Absolute splittings: 2. floor function

An interesting question is to compute $\lfloor x \rfloor$, or more generally $\lfloor x/\beta^k \rfloor$.

Algorithm 2

```
Require: x \in \mathbb{F}

y \leftarrow \text{RN}(x - 0.5)

C \leftarrow \text{RN}(\beta^p - x)

s \leftarrow \text{RN}(C + y)

x_h \leftarrow \text{RN}(s - C)

return x_h
```

Theorem 4

Assume β is even, $x \in \mathbb{F}$, $0 \leqslant x \leqslant \beta^{p-1}$. Then Algorithm 2 returns $x_h = \lfloor x \rfloor$.

-8-

- expressing a precision-p FP number x as the exact sum of a (p-s)-digit number x_h and an s-digit number x_ℓ ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: $s = p 1 \rightarrow x_h$ is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;

-9-

- expressing a precision-p FP number x as the exact sum of a (p-s)-digit number x_h and an s-digit number x_ℓ ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: $s = p 1 \rightarrow x_h$ is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;
 - → exact information

-9-

- expressing a precision-p FP number x as the exact sum of a (p-s)-digit number x_h and an s-digit number x_ℓ ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: $s = p 1 \rightarrow x_h$ is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;
 - → exact information
 - power of β close to |x|: for scaling x, such a weaker condition suffices, and can be satisfied using fewer operations.

- expressing a precision-p FP number x as the exact sum of a (p-s)-digit number x_h and an s-digit number x_ℓ ;
- first use with $s = \lfloor p/2 \rfloor$ (Dekker product, 1971)
- another use: $s = p 1 \rightarrow x_h$ is a power of β giving the order of magnitude of x. Two uses:
 - evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP algorithms;
 - → exact information
 - power of β close to |x|: for scaling x, such a weaker condition suffices, and can be satisfied using fewer operations.
 - \rightarrow approximate information

-9-

Veltkamp splitting

return (x_h, x_ℓ)

 $x \in \mathbb{F}$ and s

Algorithm 3 Veltkamp's splitting.

Require:
$$C = \beta^s + 1$$
 and x in \mathbb{F}

$$\gamma \leftarrow \mathsf{RN}(Cx)$$

$$\delta \leftarrow \mathsf{RN}(x - \gamma)$$

$$x_h \leftarrow \mathsf{RN}(\gamma + \delta)$$

$$x_\ell \leftarrow \mathsf{RN}(x - x_h)$$

Remember: catastrophic cancellation is your friend!

- Dekker (1971): radix 2 analysis, implicitly assuming no overflow;
- extended to any radix β by Linnainmaa (1981);
- works correctly even in the presence of underflows;
- Boldo (2006): Cx does not overflow \Rightarrow no other operation overflows.

Veltkamp splitting: FMA variant

If an FMA instruction is available, we suggest the following variant, that requires fewer operations.

Algorithm 4 FMA-based relative splitting.

Require:
$$C = \beta^s + 1$$
 and x in \mathbb{F}
 $\gamma \leftarrow \mathsf{RN}(Cx)$
 $x_h \leftarrow \mathsf{RN}(\gamma - \beta^s x)$
 $x_\ell \leftarrow \mathsf{RN}(Cx - \gamma)$
return (x_h, x_ℓ)

Remarks

- x_ℓ obtained in parallel with x_h
- even without an FMA, γ and $\beta^s x$ can be computed in parallel,
- the bounds on the numbers of digits of x_h and x_ℓ given by Theorem 5 can be attained.

Theorem 5

Let $x \in \mathbb{F}$ and $s \in \mathbb{Z}$ s.t. $1 \le s < p$. Barring underflow and overflow, Algorithm 4 computes $x_h, x_\ell \in \mathbb{F}$ s.t. $x = x_h + x_\ell$. If $\beta = 2$, the significands of x_h and x_ℓ have at most p - s and s bits, respectively. If $\beta > 2$ then they have at most p - s + 1 and s + 1 digits, respectively.

11-

Extracting a single bit (radix 2)

- computing ufp(x) or ulp(x), or scaling x;
- Veltkamp's splitting (Algorithm 3) to x with s = p 1: the resulting x_h has a 1-bit significand and it is nearest x in precision p s = 1.
- For computing $sign(x) \cdot ufp(x)$, we can use the following algorithm, introduced by Rump (2009).

Algorithm 5

Require:
$$\beta=2$$
, $\varphi=2^{p-1}+1$, $\psi=1-2^{-p}$, and $x\in\mathbb{F}$ $q\leftarrow \text{RN}(\varphi x)$ $r\leftarrow \text{RN}(\psi q)$ $\delta\leftarrow \text{RN}(q-r)$ return δ

Very rough explanation:

- $q \approx 2^{p-1}x + x$
- $r \approx 2^{p-1}x$
- ightarrow q-rpprox x but in the massive cancellation we loose all bits but the most significant.

-12-

Extracting a single bit (radix 2)

These solutions raise the following issues.

- If |x| is large, then an overflow can occur in the first line of both Algorithms 3 and 5.
- To avoid overflow in Algorithm 5: scale it by replacing φ by $\frac{1}{2} + 2^{-p}$ and returning $2^p \delta$ at the end. However, this variant will not work for subnormal x.
- \rightarrow to use Algorithm 5, we somehow need to check the order of magnitude of x.
 - If we are only interested in scaling x, then requiring the exact value of ufp(x) is overkill: one can get a power of 2 "close" to x with a cheaper algorithm.

Extracting a single bit (radix 2)

Algorithm 6 sign(x) · ulp(x) for radix 2 and $|x| > 2^{e_{\min}}$.

Require:
$$\beta=2$$
, $\psi=1-2^{-p}$, and $x\in\mathbb{F}$ $a\leftarrow \mathsf{RN}(\psi x)$ $\delta\leftarrow \mathsf{RN}(x-a)$ return δ

Theorem 6

If $|x| > 2^{e_{\min}}$, then Algorithm 6 returns

$$sign(x) \cdot \begin{cases} \frac{1}{2}ulp(x) & if |x| \text{ is a power of 2,} \\ ulp(x) & otherwise. \end{cases}$$

Similar algorithm for ufp(x), under the condition $|x| < 2^{e_{max}-p+1}$.

-14-

Underflow-safe and almost overflow-free scaling

- $\beta = 2, p \ge 4$;
- RN breaks ties "to even" or "to away";

Given a nonzero FP number x, compute a scaling factor δ s.t.:

- $|x|/\delta$ is much above the underflow threshold and much below the overflow threshold (so that, for example, we can safely square it);
- δ is an integer power of 2 (\rightarrow no rounding errors when multiplying or dividing by it).

Algorithms proposed just before: simple, but underflow or overflow can occur for many inputs \boldsymbol{x} .

-15-

Underflow-safe and almost overflow-free scaling

Following algorithm: underflow-safe and almost overflow-free in the sense that only the two extreme values $x=\pm(2-2^{1-\rho})\cdot 2^{e_{\max}}$ must be excluded.

Algorithm 7

-16-

Underflow-safe and almost overflow-free scaling

First 3 lines of Algorithm 7: algorithm due to Rump, Zimmermann, Boldo and Melquiond, that computes the FP successor of $x \notin [2^{e_{\min}}, 2^{e_{\min}+2}]$. We have,

Theorem 7

For $x \in \mathbb{F}$ with $|x| \neq (2-2^{1-p}) \cdot 2^{e_{\max}}$, the value δ returned by Algorithm 7 satisfies:

- if RN is with "ties to even" then δ is a power of 2;
- if RN is with "ties to away" then δ is a power of 2, unless $|x| = 2^{e_{\min}+1} 2^{e_{\min}-p+1}$, in which case it equals $3 \cdot 2^{e_{\min}-p+1}$;
- if $x \neq 0$, then

$$1 \leqslant \left| \frac{x}{\delta} \right| \leqslant 2^p - 1.$$

- \rightarrow makes δ a good candidate for scaling x;
- \rightarrow in the paper: application to $\sqrt{a^2 + b^2}$.

17-

Experimental results

Although we considered floating-point operations only, we can compare with bit-manipulations.

The C programs we used are publicly available (see proceedings).

Experimental setup: Intel i5-4590 processor, Debian testing, GCC 7.3.0 with -O3 optimization level, FPU control set to rounding to double.

Computation of round or floor:

	round	floor
Algorithms 1 and 2	0.106s	0.173s
Bit manipulation	0.302s	0.203s
GNU libm rint and floor	0.146s	0.209s

Note: Algorithms 1 and 2 require $|x| \leqslant 2^{51}$ and $0 \leqslant x \leqslant 2^{52}$ respectively.

18-

Relative splitting of a double-precision number

Splitting into x_h and x_ℓ :

	x_h	x_ℓ	time
Algorithm 3	26 bits	26 bits	0.108s
Algorithm 4	26 bits	27 bits	0.106s
Algorithm 4 with FMA	26 bits	27 bits	0.108s
Bit manipulation	26 bits	27 bits	0.095s

Algorithms 3 and 4 assume no intermediate overflow or underflow.

Conclusion

- systematic review of splitting algorithms
- found some new algorithms, in particular with FMA
- many applications for absolute and relative splitting
- in their application range, these algorithms are competitive with (less-portable) bit-manipulation algorithms

Motivation

Question of Pierrick Gaudry (Caramba team, Nancy, France):

Multiple-precision integer arithmetic in Javascript.

Javascript has only a 32-bit integer type, but 53-bit doubles!

Storing 16-bit integers in a double precision register, we can accumulate up to 2^{21} products of 32 bits, and then have to perform floor(x/65536.0) to normalize.

The Javascript code Math.Floor(x/65536.0) is slow on old internet browsers (Internet Explorer version 7 or 8)!

The Javascript standard says it is IEEE754, with always round to nearest, ties to even.

Pierrick Gaudry then opened the "Handbook of Floating-Point Arithmetic" \ldots

First algorithm (designed by Pierrick Gaudry):

Assume $0 \le x < 2^{36}$ and x is an integer

We can compute floor(x) as follows:

Let
$$C = 2^{36} - 2^{-1} + 2^{-17}$$
.

$$s \leftarrow RN(C + x)$$

Return RN(s - C)

Question: can we get rid of the condition "x integer"?