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Arithmetic in neuromorphic chips

• Neuromorphic chips are designed to simulate Spiking-Neural-Networks – very 
biologically realistic models of neurons and synapses.

• The main question is: How much bits do we need for arithmetic operations in 
neuromorphic hardware?

• Fixed- or floating-point?
• How much bits is enough to simulate the brain? (Brain as defined by 

computational neuroscientists - not just application specific deep learning, 
machine learning etc.)

• For this work we chose: Fixed-point, internal 39-bits with programmable 
approximation to 32-bit output.
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Motivation: Why accelerate 
exponential function?

Images: Furtak, S. (2018). Neurons. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: 
Psychology

𝐿𝐼𝐹 𝑛𝑒𝑢𝑟𝑜𝑛 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑖𝑠 𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑 𝑎𝑠:
𝑑𝑉

𝑑𝑡
=
− 𝑢 𝑡 − 𝑢𝑟𝑒𝑠𝑡 + 𝑅𝐼(𝑡)

𝜏𝑚
Similar equations are derived for describing ion channel opening/closing, intrinsic neuron 
current activation/deactivation and plasticity of the synaptic gap (to change the weight in 
learning).

Energy/memory/delay is significant using soft-exponential (decay)!
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Neuromorphic chips

Intel Loihi (2018)

Brainscales (2011) IBM TrueNorth (2014)
SpiNNaker (2011)

DYNAP (2018)
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SpiNNaker (Manchester, 2011)
• 18 ARM968 cores

• 96K memory per core

• 128MB Off-chip memory

• 1W power

• Fixed-point arithmetic (GCC 
implementation of ISO 18037)

• 95 cycle soft-exponential

Neuron models of size
equivalent to 1% of

human brain
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SpiNNaker-2 (Manchester, Dresden, 
2020)

• 144 ARM M4F  cores

• 128K memory per core (With 
capability to use other core’s 
memories)

• ~2GB Off-chip memory

• Single precision floating point 
hardware unit

• Random Number Generators

• Machine Learning Accelerator

• 1W power (+power management 
based on neural network activity)

• exp and log (base e) accelerators 
(x144)

Image: Sebastian Höppner, SpiNNaker2, NICE2018
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Most used functions in SpiNNaker

• Exponential decay e-x

• Random number generation
• Reciprocal 1/x (E.g. sigmoid activation/deactivation function)
• Multiply-accumulate for ODE solvers

Proposed method for arithmetic in SpiNNaker-2:

Use fixed-point arithmetic when building accelerators – at least 4x less 
area/energy than floating-point*.

Use floating-point unit in ARM M4F only for accuracy sensitive models (Complex 
neuron ODE).

Use fixed-point arithmetic everywhere else (+ accelerators and DSP instruction 
set)

*Data from: “High-Performance Hardware for Machine Learning”, W. Dally, U.C. Berkeley, 2016
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Well known shift-and-add algorithm 
for exp/log*

* Elementary Functions – Algorithms and Implementation 3rd ed., Muller, 2016 

𝐿𝑛+1 = 𝐿𝑛 − ln(1 + 𝑑𝑛2
−𝑛)

𝐸𝑛+1 = 𝐸𝑛 + 𝑑𝑛𝐸𝑛2
−𝑛

Mode 𝑒𝑥 𝑙𝑜𝑔𝑒(𝑥)

Next 
iteration 
control

𝑑𝑛 =

−1 𝑖𝑓 2𝑛𝐿𝑛 ≤ −
3

2

0 𝑖𝑓 − 1 ≤ 2𝑛𝐿𝑛 ≤ −
1

2
1 𝑖𝑓 2𝑛𝐿𝑛 ≥ 0

𝑑𝑛 =

−1 𝑖𝑓 2𝑛(𝐸𝑛−1) ≤ −1

0 𝑖𝑓 −
1

2
≤ 2𝑛(𝐸𝑛−1) ≤ 0

1 𝑖𝑓 2𝑛(𝐸𝑛−1) ≥
1

2

With correct initialization, n iterations produce n-1 significant bits approximation.
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Implementation

• Critical path strained in order to run more 
iterations per cycle.

• Iteration parallelized as much as possible –
precalculate next iteration (all possible next 
values) while choosing dn.
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Results: Accuracy and 
monotonicity s16.15 format

• Full accuracy (8 loops)
• Top: exp in the domain

[-10.4, 11.1]
• Bottom: log in the full

domain
• Accuracy: 3 neighbouring

values around C
double-precision sample.

Note: This result and further are obtained by comparing to
math.h double precision exp() (error = result(x) – exp(x))
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Results: Accuracy and 
monotonicity s16.15 format

𝑒𝑥 𝑙𝑜𝑔𝑒(𝑥)

N Max abs.err. Monotonic Max abs.err. Monotonic

8 0.00004425 Yes 0.00003082 Yes

7 0.00023559 Yes 0.00003082 Yes

6 0.00387969 Yes 0.00003082 Yes

5 0.06096649 Yes 0.00003112 Yes

4 0.99264343 Yes 0.00004089 No

3 15.3052932 No 0.00019928 No

2 241.053592 No 0.00268463 No

1 3352.69732 No 0.03837280 No

Each case has reduced accuracy by running less loops (Where each loop gives 
approximately 4 bits of answer).
𝜖 = 2−15 = 0.000030517578125
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Results: Accuracy and 
monotonicity s0.31 format

𝑒𝑥 𝑙𝑜𝑔𝑒(𝑥)

N Max abs.err. Monotonic Max abs.err. Monotonic

8 0.000000000722 Yes 0.000000001387 Yes

7 0.000000003744 No 0.000000003613 Yes

6 0.000000059274 No 0.000000040312 Yes

5 0.000000945120 No 0.000000645976 No

4 0.000014910344 No 0.000010420316 No

3 0.000236990545 No 0.000170091129 No

2 0.003536022179 No 0.002655907041 No

1 0.045793333569 No 0.038344341439 No

Each case has reduced accuracy by running less loops (Where each loop 
gives approximately 4 bits of answer).
𝜖 = 2−31 = 0:000000000465661
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Technology and Implementation 
Strategy
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• GLOBALFOUNDRIES 22FDX (FDSOI) technology [1]
• Adaptive body biasing (ABB) solution and foundation IP by Dresden 

Spinoff Racyics [2] → Enables operation down to 0.40V (0.36V wc)
• Forward Body Bias Scheme with Low-VT (LVT) and Super-low-VT 

(SLVT) flavors.
• Power performance area (PPA) studies for neuromorphic 

application scenarios

250MHz

500MHz
50MHz

100MHz

Source: Sebastian Höppner, SpiNNaker2, NICE2018

Target implementation point for maximum energy efficiency at 
nominally 0.50V and 250MHz (worst case 0.45V and 0C)
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Results: Synthesis and timing 
analysis

6 accelerator versions are covered with varying number of iteration hardware units 
instantiated, denoted by variable I.

(cycles/op)
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Results: Synthesis and timing 
analysis

• Same conditions as before, but now varying the clock frequency constraint.

• Area and leakage is measured for two units with I=1 and I=4.
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Results: Place and route

• Full processing element is shown after P&R with 
the accelerator in red.

• The power consumption of the circuit is analysed 
in a typical process condition at worst case power 
conditions of 0.5V at 85C.

• Software testcases on a netlist of the PE show 
0.16-0.39nJ/exp energy (depending on the level 
of approximation)

• 56x-325x lower EDP than SpiNNaker software 
exp.
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Conclusion

• Accelerator with almost full accuracy in fixed-point s16.15 and s0.31 formats 
was presented.

• Approximation control for experimenting with accuracy was explored.
• The prototype chip is currently in manufacturing. The chips will arrive in the lab 

later in 2018.
• Iterative algorithms cause challenges for tighter timing constraints due to very 

sequential nature.
• We have discussed how to parallelize a single iteration module, but leakage is 

still a problem if more than 2 iterations are placed in a clock cycle.
• Unit with 4 iterations is quite a good design point for power, area and ops/s.
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Further work

Exponential/logarithm unit:
• Floating-point conversion
• Rounding; higher radix shift-and-add; programmable fixed-point format.
• We have another exponential function design using LUTs and polynomial 

approximation – comparison of two approaches in 22nm.
• How to parallelize shift-add algorithms further?

Other neuromorphic arithmetic for saving energy/memory:
• Stochastic rounding (allows smaller precision arithmetic without loss of accuracy 

in some applications)
• Approximate arithmetic with errors in the circuit (leverage error tolerance of 

neuromorphic applications)
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Extra references
Images of the chips:
• https://newsroom.intel.com/editorials/intel-creates-neuromorphic-research-

community/
• http://www.artificialbrains.com/brainscales
• https://en.wikipedia.org/wiki/TrueNorth
• https://ai-ctx.com/products/dynap/
• http://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-

SpiNNaker2.pdf

Implementation technology:

[1] R. Carter et al., "22nm FDSOI technology for emerging mobile, Internet-of-Things, 
and RF applications," 2016 IEEE International Electron Devices Meeting (IEDM), San 
Francisco, CA, 2016, pp. 2.2.1-2.2.4. doi: 10.1109/IEDM.2016.7838029

[2] www.makeChip.design

https://newsroom.intel.com/editorials/intel-creates-neuromorphic-research-community/
http://www.artificialbrains.com/brainscales
https://en.wikipedia.org/wiki/TrueNorth
https://ai-ctx.com/products/dynap/
http://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
http://www.makechip.design/
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