

HIGH DENSITY AND PERFORMANCE MULTIPLICATION FOR FPGA

Martin Langhammer and Gregg Baeckler June 2018

AI/DL/ML inference driving need for much higher FPGA arithmetic density And at a low precision Known small multiplier architectures are not effective Logic mapping, routing mapping Routing micro-architectures and macro-architectures poorly understood Independent routing density a subset of redundant routing density This paper shows how to balance logic and routing for maximum FPGA efficiency

FPGA Architecture

Recent Work

Kumm, et.al. ARITH22 (2015)

Similar work by Walters

Use Xilinx 6LUT to implement Booth's 4 level

Use embedded adder to sum previous level

Array structure has long latency

Regular and Irregular Multipliers

FPGA logic naturally more efficient with regular structures

4LUT + adder can implement sum of two pencil and paper partial products

Adder tree (2 input) most efficient when powers of 2 number of inputs

Nx4, Nx8, Nx16, etc

Multiplier regularization makes irregular multipliers regular

MULTIPLIER REGULARIZATION

3x3 - A Trivial First Case

Doesn't depend on carry chain

3x3 multiplier useful for AI inference

A trivial case – or is it?

Saving 1 LUT significant if you have 50K multipliers

Logic savings overshadowed by routing optimization and simplification

Second level carry chain creates device placement restriction

Regularized 3x3

Refactor logic in any column to more than 100% if required

Refactor any logic over 100% to a function of 1 bit + 100% of remaining capability

Use out of band functions for other partially used columns

Column	5	4	3	2	1	0
PP0	0	<i>p</i> _{2,2}	$p_{2,1}$	$p_{2,0}$	$p_{0,1}$	$p_{0,0}$
PP1	0	$AUX_2 \oplus p_{1,2}$	AUX_2	AUX_1	<i>p</i> _{1,0}	0

3x3 - Details

inte

4x4 Case – De-regularize then Regularize

5x5

Col.	8		7	6	5	4	3	2	1	0
PP0	0		0	0	0	$p_{0,4}$	$p_{0,3}$	$p_{0,2}$	$p_{0,1}$	$p_{0,0}$
PP1	0		0	0	$p_{1,4}$	$p_{1,3}$	$p_{1,2}$	<i>p</i> _{1,1}	$p_{1,0}$	0
PP2	0		0	$p_{2,4}$	<i>p</i> _{2,3}	$p_{2,2}$	$p_{2,1}$	$p_{2,0}$	0	0
PP3	0		$p_{3,4}$	<i>p</i> _{3,3}	<i>p</i> _{3,2}	$p_{3,1}$	$p_{3,0}$	0	0	0
PP4	$p_{4,}$	4	<i>p</i> _{4,3}	$p_{4,2}$	$p_{4,1}$	$p_{4,0}$	0	0	0	0
Colun	nn	8	7	6	5	4	3	2	1	0
PP0)	0	0	$p_{2,4}$	$p_{2,3}$	$p_{0,4}$	$p_{0,3}$	$p_{0,2}$	$p_{0,1}$	$p_{0,0}$
PP1		0	0	0	$p_{1,4}$	$p_{1,3}$	$p_{1,2}$	$p_{1,1}$	<i>p</i> _{1,0}	0
PP2		0	0	0	0	$p_{2,2}$	0	0	0	0
Colur	nn		8	7	6	5	4	3	2	1 0
PP3	3		0	<i>p</i> _{3,4}	<i>p</i> _{3,3}	<i>p</i> _{3,2}	<i>p</i> _{3,1}	<i>p</i> _{3,0}	0	0 0
PP4	1	p	94,4	$p_{4,3}$	$p_{4,2}$	$p_{4,1}$	$p_{4,0}$	0	0	0 0

Good

Column	8	7	6	5	4	3	2	1	0
PP0	0	0	$p_{2,4}$	<i>p</i> _{2,3}	$p_{0,4}$	$p_{0,3}$	$p_{0,2}$	$p_{0,1}$	$p_{0,0}$
PP1	0	0	0	$p_{1,4}$	<i>p</i> _{1,3}	$p_{1,2}$	$p_{1,1}$	<i>p</i> _{1,0}	0
PP2	0	0	0	0	<i>p</i> _{2,2}	0	0	0	0

Bad

Column	8	7	6	5	4	3	2	1	0
PP0	0	0	$p_{2,4}$	$p_{2,3}$	$p_{0,4}$	$p_{0,3}$	$p_{0,2}$	$p_{0,1}$	$p_{0,0}$
PP1	0	0	0	$p_{1,4}$	<i>p</i> _{1,3}	<i>p</i> _{1,2}	$p_{1,1}$	<i>p</i> _{1,0}	0
PP2	0	0	0	0	<i>p</i> _{2,2}	0	0	0	0

				•					
Col.	8	7	6	5	4	3	2	1	0
PP0'	0	0	$p_{2,4}$	<i>p</i> _{2,3}	$p_{0,4}$	<i>p</i> _{0,3}	$p_{0,2}$	<i>p</i> _{0,1}	$p_{0,0}$
PP1'	0	0	$AUX_2 \oplus p_{2,3}$	AUX_2	AUX_1	$p_{1,2}$	$p_{1,1}$	$p_{1,0}$	0

TERNARY TO BINARY ADDER MAPPING

Adder Tree Simplification

Ternary addition does not work in the general case

Routing density

Ternary condition may occur for n*3 partial products

Col. 11 10 9 8 6 5 PP0 0 0 0 0 0 0 $p_{0}, 5$ $p_{0}, 4$ $p_0, 3 \quad p_0, 2 \quad p_0, 1$ $p_{0}, 0$ PP1 0 0 0 0 0 $p_{1,5}$ $p_{1}, 4$ $p_{1}, 3$ $p_{1}, 1$ $p_{1}, 0$ 0 p_1 , PP2 0 0 $p_{2}, 5$ $p_{2},3$ $p_{2}, 2$ 0 0 $p_{2}, 4$ $p_{2}, 0$ 0 0 $p_2, 1$ PP3 $p_{3}, \overline{5}$ $p_{3}, 2$ 0 0 0 $p_{3}, \bar{3}$ $p_{3},\bar{0}$ 0 $p_{3}, 4$ $p_{3}, 1$ 0 0 PP4 0 $p_{4}, \bar{5}$ $p_{4}, 4$ 0 0 0 0 $p_{4}, 3$ $p_{4}, 2$ $p_{4}, 0$ 0 $p_4, 1$ PP5 $p_{5}, 5$ $p_{5,3}$ $p_{5}, 2$ $p_{5}, 4$ 0 0 0 p5. $p_{5}, 0$ 0 0

6x6

7x7 regularized

PP0+PP1	<i>Z</i> 7	<i>Z</i> 6	<i>Z</i> 5	<i>Z</i> 4	<i>x</i> ₇	<i>x</i> ₆	<i>x</i> 5	<i>x</i> ₄	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁)
PP2+PP3	0	0	<i>y</i> 7	<i>y</i> 6	<i>y</i> 5	<i>y</i> 4	<i>y</i> 3	<i>y</i> 2	<i>y</i> 1	y_L	0	
PP4+PP5	0	0	0	0	<i>z</i> 3	<i>z</i> ₂	z_1	Z_L	0	0	0	

Mapping Details

 $s_{1} = x_{4} \oplus y_{2} \oplus z_{L}$ $c_{1} = \text{Majority}(x_{4}, y_{2}, z_{L})$ $= (x_{4} \cdot y_{2}) + (x_{4} \cdot z_{L}) + (y_{2} \cdot z_{L})$ $hs_{1} = x_{5} \oplus y_{3} \oplus z_{1} \text{(auxiliary cell)}$ $hc_{1} = \text{Majority}(x_{5}, y_{3}, z_{1}) \text{(auxiliary cell)}$ $s_{2} = x_{6} \oplus y_{4} \oplus z_{2}$ $c_{1} = \text{Majority}(x_{6}, y_{4}, z_{2})$ $hs_{2} = x_{7} \oplus y_{5} \oplus z_{3} \text{(auxiliary cell)}$ $hc_{2} = \text{Majority}(x_{7}, y_{5}, z_{3}) \text{(auxiliary cell)}$

$s_3 = z_4 \oplus y_6$	$c_3 = z_4 \cdot y_6$

 $s_4 = z_5 \oplus y_7 \qquad \qquad c_4 = z_5 \cdot y_7$

Col.	11	10	9	8	7	6	5	4	3	2	1	0
Line0	Z7	<i>z</i> 6	<i>s</i> ₄	<i>s</i> ₃	hs_2	<i>s</i> ₂	hs_1	<i>s</i> ₁	<i>x</i> ₃	<i>x</i> ₂	<i>x</i> ₁	x_L
Line1	0	<i>c</i> ₄	<i>c</i> ₃	hc_2	<i>c</i> ₂	hc_1	<i>c</i> ₁	0	<i>y</i> ₁	y_L	0	0

RESULTS AND CONCLUSIONS

Results

Precision	0	urs	II	ntel	Xilinx		
Trecision	Area	Depth	Area	Depth	Area	Depth	
4x4	8	1	11	2	12	2	
5x5	13	2	22	3	20	3	
6x6	21	2	30	3	24	3	
7x7	25	2	34	3	36	4	
8x8	36	3	36	3	40	4	
9x9	43	3	48	4	55	5	

Precision	Area	Depth
4x3	6	1
5x4	11	2
5x3	7	1
6x5	16	2
6x4	12	2
6x3	8	1
7x6	23	2
7x5	19	2
7x4	14	2
7x3	9	1

Programmable Solutions Group

Introduced out-of-band (Auxiliary) functions

Maximized use of independent routing

Overall routing use low stress

Likely to support high system density

Multiple optimizations can be used together

Smallest – and lowest latency – low precision multiplier results known

17

