multillerioveripien

Martin Langhammer and Gregg Baeckler June 2018

Overview

AI/DL/ML inference driving need for much higher FPGA arithmetic density
And at a low precision
Known small multiplier architectures are not effective
Logic mapping, routing mapping
Routing micro-architectures and macro-architectures poorly understood
Independent routing density a subset of redundant routing density
This paper shows how to balance logic and routing for maximum FPGA efficiency

FPGA Architecture

Xilinx

Recent Work

Kumm, et.al. ARITH22 (2015)
Similar work by Walters
Use Xilinx 6LUT to implement Booth's 4 level

Use embedded adder to sum previous level

Array structure has long latency

PROPOSED ARCHITECTURE

Regular and Irregular Multipliers

FPGA logic naturally more efficient with regular structures
4LUT + adder can implement sum of two pencil and paper partial products

Adder tree (2 input) most efficient when powers of 2 number of inputs

N×4, Nx8, Nx16, etc
Multiplier regularization makes irregular multipliers regular

MULITIPLER REGULARIZATION

3x3-A Trivial First Case

3×3 multiplier useful for Al inference
A trivial case - or is it?
Saving 1 LUT significant if you have 50K multipliers

Unused logic (and routing)

Logic savings overshadowed by routing optimization and simplification

Second level carry chain creates device placement restriction

Regularized 3x3

Refactor logic in any column to more than 100\% if required

Refactor any logic over 100\% to a function of 1 bit + 100\% of remaining capability

Use out of band functions for other partially used columns

Column	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
PP0	0	$p_{2,2}$	$p_{2,1}$	$p_{2,0}$	$p_{0,1}$	$p_{0,0}$
PP1	0	$A U X_{2} \oplus p_{1,2}$	$A U X_{2}$	$A U X_{1}$	$p_{1,0}$	0

3×3 - Details

\section*{C B A
 | | F | E | D |
| :--- | :--- | :--- | :--- |
| J | CXXORE | | |
| H | G | | KANDE |
 K B A
 F J J D
 I H G
 \[

$$
\begin{aligned}
& L=K X O R F \\
& M=K \text { AND F }
\end{aligned}
$$
\]}

$$
\begin{aligned}
& J=A 2 B 0 \text { XOR A1B1 } \\
& K=A 2 B 0 \text { AND A1B1 }
\end{aligned}
$$

L = (A2B0 AND A1B1) XOR A2B1

M L J D A
 I H G B

4x4 Case - De-regularize then Regularize

5×5

Good

Column	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
PP0	0	0	$p_{2,4}$	$p_{2,3}$	$p_{0,4}$	$p_{0,3}$	$p_{0,2}$	$p_{0,1}$	$p_{0,0}$
PP1	0	0	0	$p_{1,4}$	$p_{1,3}$	$p_{1,2}$	$p_{1,1}$	$p_{1,0}$	0
PP2	0	0	0	0	$p_{2,2}$	0	0	0	0

Bad

Column	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
PP0	0	0	$p_{2,4}$	$p_{2,3}$	$p_{0,4}$	$p_{0,3}$	$p_{0,2}$	$p_{0,1}$	$p_{0,0}$
PP1	0	0	0	$p_{1,4}$	$p_{1,3}$	$p_{1,2}$	$p_{1,1}$	$p_{1,0}$	0
PP2	0	0	0	0	$p_{2,2}$	0	0	0	0

TERNARYTO BINARY ADDER MAPPING

Adder Tree Simplification

Ternary addition does not work in the general case

Routing density
Ternary condition may occur for n*3 partial products
6×6
7×7 regularized

Col.	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
PP0	0	0	0	0	0	0	$p_{0}, 5$	$p_{0}, 4$	$p_{0}, 3$	$p_{0}, 2$	$p_{0}, 1$	$p_{0}, 0$
PP1	0	0	0	0	0	$p_{1}, 5$	$p_{1}, 4$	$p_{1}, 3$	$p_{1}, 2$	$p_{1},$,	$p_{1}, 0$	0
PP2	0	0	0	0	$p_{2}, 5$	$p_{2}, 4$	$p_{2}, 3$	$p_{2}, 2$	$p_{2}, 1$	$p_{2}, 0$	0	0
PP3	0	0	0	$p_{3}, 5$	$p_{3}, 4$	$p_{3}, 3$	$p_{3}, 2$	$p_{3}, 1$	$p_{3}, 0$	0	0	0
PP4	0	0	$p_{4}, 5$	$p_{4}, 4$	$p_{4}, 3$	$p_{4}, 2$	$p_{4}, 1$	$p_{4}, 0$	0	0	0	0
PP5	0	$p_{5}, 5$	$p_{5}, 4$	$p_{5}, 3$	$p_{5}, 2$	$p_{5}, 1$	$p_{5}, 0$	0	0	0	0	0

Col.	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
PP0+PP1	0	0	0	0	x_{7}	x_{6}	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	x_{L}
PP2+PP3	0	0	y_{7}	y_{6}	y_{5}	y_{4}	y_{3}	y_{2}	y_{1}	y_{L}	0	0
PP4+PP5	z_{7}	z_{6}	z_{5}	z_{4}	z_{3}	z_{2}	z_{1}	z_{L}	0	0	0	0

Col.	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
PP0+PP1	z_{7}	z_{6}	z_{5}	z_{4}	x_{7}	x_{6}	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	x_{L}
PP2+PP3	0	0	y_{7}	y_{6}	y_{5}	y_{4}	y_{3}	y_{2}	y_{1}	y_{L}	0	0
PP4+PP5	0	0	0	0	z_{3}	z_{2}	z_{1}	z_{L}	0	0	0	0

Mapping Details

$$
\begin{aligned}
s_{1} & =x_{4} \oplus y_{2} \oplus z_{L} \\
c_{1} & =\operatorname{Majority}\left(x_{4}, y_{2}, z_{L}\right) \\
& =\left(x_{4} \cdot y_{2}\right)+\left(x_{4} \cdot z_{L}\right)+\left(y_{2} \cdot z_{L}\right) \\
h s_{1} & =x_{5} \oplus y_{3} \oplus z_{1}(\text { auxiliary cell }) \\
h c_{1} & =\operatorname{Majority}\left(x_{5}, y_{3}, z_{1}\right) \text { (auxiliary cell) } \\
s_{2} & =x_{6} \oplus y_{4} \oplus z_{2} \\
c_{1} & =\operatorname{Majority}\left(x_{6}, y_{4}, z_{2}\right) \\
h s_{2} & =x_{7} \oplus y_{5} \oplus z_{3}(\text { auxiliary cell }) \\
h c_{2} & =\operatorname{Majority}\left(x_{7}, y_{5}, z_{3}\right) \text { (auxiliary cell) } \\
s_{3} & =z_{4} \oplus y_{6} \quad \quad c_{3}=z_{4} \cdot y_{6} \\
s_{4} & =z_{5} \oplus y_{7} \quad c_{4}=z_{5} \cdot y_{7}
\end{aligned}
$$

Col.	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Line0	z_{7}	z_{6}	s_{4}	s_{3}	$h s_{2}$	s_{2}	$h s_{1}$	s_{1}	x_{3}	x_{2}	x_{1}	x_{L}
Line1	0	c_{4}	c_{3}	$h c_{2}$	c_{2}	$h c_{1}$	c_{1}	0	y_{1}	y_{L}	0	0

RESULTSANDCONELLSIONS

Results

Precision	Ours		Intel		Xilinx	
	Area	Depth	Area	Depth	Area	Depth
4×4	8	1	11	2	12	2
5×5	13	2	22	3	20	3
6×6	21	2	30	3	24	3
7×7	25	2	34	3	36	4
8×8	36	3	36	3	40	4
9×9	43	3	48	4	55	5

Precision	Area	Depth
4×3	6	1
5×4	11	2
5×3	7	1
6×5	16	2
6×4	12	2
6×3	8	1
7×6	23	2
7×5	19	2
7×4	14	2
7×3	9	1

Summary

Introduced out-of-band (Auxiliary) functions
Maximized use of independent routing
Overall routing use low stress
Likely to support high system density
Multiple optimizations can be used together
Smallest - and lowest latency - low precision multiplier results known

(inter)

