A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Sylvie Boldo, Florian Faissole, and Vincent Tourneur ${ }^{1}$

université PARIS-SACLAY

ARITH-25 - June 26th
${ }^{1}$ Thanks to the IEEE for the student travel award.

Introduction

- FP arithmetic: IEEE-754.
- IEEE-754 2008 revision adds radix-10 formats (decimal32, decimal64).
- Many algorithms designed for radix-2 FP numbers are not valid anymore.

Goal: Adapt an existing algorithm from radix-2 FP numbers literature to radix-10.

Average of two FP numbers

Compute the correct rounding of the average of two FP numbers:

$$
\circ\left(\frac{a+b}{2}\right) \quad \text { with } \circ \text { a rounding to nearest }
$$

with as few tests as possible.

Outline

(1) Radix-2 Average Algorithms
(2) Unsuccessful Radix-10 Average Algorithm
(3) Radix-10 Average Algorithm

4 Formal Proof with Coq and Flocq
(5) Conclusion

Outline

(1) Radix-2 Average Algorithms

(2) Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm
(4) Formal Proof with Coq and Flocq
(5) Conclusion

FP Average in Radix 2

- Studied by Sterbenz (1974):
- $(a \oplus b) \oslash 2$: accurate, but may overflow when a and b share the same sign.
- $(a \oslash 2) \oplus(b \oslash 2)$: accurate, except when underflow.
- $a \oplus((b \ominus a) \oslash 2)$: less accurate, but does not overflow. when a and b share the same sign
- A corresponding algorithm has been proved by Boldo to guarantee accuracy. This is a long program, since a full sign study is required to choose the correct formula.

FP Average in Radix 2

- Studied by Sterbenz (1974):
- $(a \oplus b) \oslash$ 2: accurate, but may overflow when a and b share the same sign.
- $(a \oslash 2) \oplus(b \oslash 2)$: accurate, except when underflow.
- $a \oplus((b \ominus a) \oslash 2)$: less accurate, but does not overflow. when a and b share the same sign
- A corresponding algorithm has been proved by Boldo to guarantee accuracy. This is a long program, since a full sign study is required to choose the correct formula.

Correctly-Rounded Radix-2 Algorithm

A simpler algorithm that computes the correctly-rounded average is formally proved by Boldo (2015). Using radix-2 binary64 FP numbers:

```
double average(double C, double x, double y) {
    if (C <= abs(x))
        return x/2+y/2;
    else
        return (x+y)/2;
}
```

C is a constant that can be chosen between 2^{-967} and 2^{970}.

Dividing FP numbers by 2

- In radix 2 , dividing by 2 is exact (except when underflow).
- In radix 10 , there are 2 different cases:
- If the mantissa is even or small: the result is exact.
- Otherwise, the mantissa is odd and the result is a midpoint.

Outline

(1) Radix-2 Average Algorithms
(2) Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm
(4) Formal Proof with Coq and Flocq
(5) Conclusion

Radix-10 FP Numbers Format

In this section, we use the following FP format:

- Radix: 10.
- Mantissa size: 4 digits.
- Unbounded exponent range.
- Rounding to nearest, tie-breaking to even.

Algorithms based on $(a+b) / 2$

Algorithm: $(a \oplus b) \oslash 2$
Counter-example of correct rounding:

$a / 2$ is a midpoint, but b is positive, so the rounding should have
been towards $+\infty$

Algorithms based on $(a+b) / 2$

Algorithm: $(a \oplus b) \oslash 2$
Counter-example of correct rounding:

$$
a=3001 \times 10^{10}, b=1000 \times 10^{0}
$$

a	3001
b	101000
$a+b$	30010000001
$a \oplus b$	15005
$(a \oplus b) / 2$	1500
$(a \oplus b) \oslash 2$	

Algorithms based on $(a+b) / 2$

Algorithm: $(a \oplus b) \oslash 2$
Counter-example of correct rounding:

$$
a=3001 \times 10^{10}, b=1000 \times 10^{0}
$$

a	3001
b	101000
$a+b$	3001000001
$a \oplus b$	15005
$(a \oplus b) / 2$	1500
$(a \oplus b) \oslash 2$	150050000005
$(a+b) / 2$	1501
$((a+b) / 2)$	

$a / 2$ is a midpoint, but b is positive, so the rounding should have been towards $+\infty$.

Algorithms based on $(a / 2)+(b / 2)$

Algorithm: $(a \oslash 2) \oplus(b \oslash 2)$

Counter-example of correct rounding: (same)

Algorithms based on $(a / 2)+(b / 2)$

Algorithm: $(a \oslash 2) \oplus(b \oslash 2)$
Counter-example of correct rounding: (same)

$$
a=3001 \times 10^{10}, b=1000 \times 10^{0}
$$

a	3001
b	
$a / 2$	1000
$a \oslash 2$	1500
$b / 2$	
$(a \oslash 2)+(b \oslash 2)$	150000000005
$(a \oslash 2) \oplus(b \oslash 2)$	1500

Algorithms based on $(a / 2)+(b / 2)$

Algorithm: $(a \oslash 2) \oplus(b \oslash 2)$
Counter-example of correct rounding: (same)

$$
a=3001 \times 10^{10}, b=1000 \times 10^{0}
$$

a	3001	
b		1000
$a / 2$	15005	
$a \oslash 2$		
$b / 2$	5000	
$(a \oslash 2)+(b \oslash 2)$	150000000005	
$(a \oslash 2) \oplus(b \oslash 2)$	1500	
$(a+b) / 2$	150050000005	
$o((a+b) / 2)$	1501	

Same issue, $a / 2$ is a midpoint, and is rounded before taking into account the value of b.

Algorithms based on $(a / 2)+(b / 2)$, using FMA

Algorithm: $\circ(a \times 0.5+(b \oslash 2))$
There is one rounding less thanks to the FMA operator.
Counter-example of correct rounding:

Algorithms based on $(a / 2)+(b / 2)$, using FMA

Algorithm: $\circ(a \times 0.5+(b \oslash 2))$
There is one rounding less thanks to the FMA operator.
Counter-example of correct rounding:

$$
a=2001 \times 10^{10}, b=2001 \times 10^{8}
$$

a	2001
b	2001
$b / 2$	10005
$b \oslash 2$	1000
$a \times 0.5$	10005
$a \times 0.5+(b \oslash 2)$	10105
$a(a \times 0.5+(b \oslash 2))$	1010

Algorithms based on $(a / 2)+(b / 2)$, using FMA

Algorithm: $\circ(a \times 0.5+(b \oslash 2))$
There is one rounding less thanks to the FMA operator.
Counter-example of correct rounding:

$$
a=2001 \times 10^{10}, b=2001 \times 10^{8}
$$

a	2001
b	2001
$b / 2$	10005
$b \oslash 2$	1000
$a \times 0.5$	10005
$a \times 0.5+(b \oslash 2)$	10105
$o(a \times 0.5+(b \oslash 2))$	1010
$(a+b) / 2$	1010505
$o((a+b) / 2)$	1011

Outline

(1) Radix-2 Average Algorithms
(2) Unsuccessful Radix-10 Average Algorithm
(3) Radix-10 Average Algorithm
(4) Formal Proof with Coq and Flocq
(5) Conclusion

TwoSum

TwoSum (x, y) computes (with 6 flops) the sum of x and y, and the rounding error. It works in radix-10 and returns the rounding and the error of an FP addition (always representable exactly by an FP number).

$$
\begin{gathered}
(a, b)=\operatorname{TwoSum}(x, y) \Longrightarrow \\
x+y=a+b \quad \wedge \quad|b| \leq \frac{\operatorname{ulp}(a)}{2}
\end{gathered}
$$

Sketch of the Proof with Unbounded Exponent Range

```
1 Function Average10( \(x, y\) )
2 ( \(a, b)=\operatorname{TwoSum}(x, y)\)
    if \(\circ(a \times 0.5-(a \oslash 2))=0\) then
    return \(\circ(b \times 0.5+(a \oslash 2))\)
    else
        return \(\circ(a \times 0.5+b)\)
```


Sketch of the Proof with Unbounded Exponent Range

```
1 Function Average10( \(x, y\) )
```

 \((a, b)=\operatorname{TwoSum}(x, y)\)
    ```
    \((a, b)=\operatorname{TwoSum}(x, y)\)
    if \(\circ(a \times 0.5-(a \oslash 2))=0\) then
    if \(\circ(a \times 0.5-(a \oslash 2))=0\) then
        return \(\circ(b \times 0.5+(a \oslash 2))\)
        return \(\circ(b \times 0.5+(a \oslash 2))\)
    else
    else
        return \(\circ(a \times 0.5+b)\)
```

 return \(\circ(a \times 0.5+b)\)
    ```
- The if checks whether \(a / 2\) is a FP number.

4 are exact until the last rounding.
\(\qquad\)
following lemma.

\section*{Sketch of the Proof with Unbounded Exponent Range}
```

1 Function Average10(x, y)

```
    (a,b) = TwoSum (x,y)
```

 (a,b) = TwoSum (x,y)
 if }\circ(a\times0.5-(a\oslash2))=0 the
 if }\circ(a\times0.5-(a\oslash2))=0 the
 return \circ(b\times0.5+(a\oslash 2))
 return \circ(b\times0.5+(a\oslash 2))
 else
 else
 return }\circ(a\times0.5+b
    ```
        return }\circ(a\times0.5+b
```

- The if checks whether $a / 2$ is a FP number.
- If $a / 2 \in \mathbb{F}$, we have $a \oslash 2=a / 2$. So the computations of line 4 are exact until the last rounding.

Sketch of the Proof with Unbounded Exponent Range

```
1 Function Average10( \(x, y\) )
```

 (a,b) = TwoSum (x,y)
    ```
    (a,b) = TwoSum (x,y)
    if }\circ(a\times0.5-(a\oslash2))=0 the
    if }\circ(a\times0.5-(a\oslash2))=0 the
        return \circ(b\times0.5+(a\oslash 2))
        return \circ(b\times0.5+(a\oslash 2))
    else
    else
        return }\circ(a\times0.5+b
```

 return }\circ(a\times0.5+b
    ```
- The if checks whether \(a / 2\) is a FP number.
- If \(a / 2 \in \mathbb{F}\), we have \(a \oslash 2=a / 2\). So the computations of line 4 are exact until the last rounding.
- In the other case, \(a / 2\) is a midpoint and we rely on the following lemma.

\section*{Sketch of the Proof with Unbounded Exponent Range}
```

1 Function Average10(x, y)

```
    (a,b) = TwoSum (x,y)
```

 (a,b) = TwoSum (x,y)
 if }\circ(a\times0.5-(a\oslash2))=0 the
 if }\circ(a\times0.5-(a\oslash2))=0 the
 return \circ(b×0.5+(a\oslash 2))
 return \circ(b×0.5+(a\oslash 2))
 else
 else
 return }\circ(a\times0.5+b
    ```
        return }\circ(a\times0.5+b
```

- The if checks whether $a / 2$ is a FP number.
- If $a / 2 \in \mathbb{F}$, we have $a \oslash 2=a / 2$. So the computations of line 4 are exact until the last rounding.
- In the other case, $a / 2$ is a midpoint and we rely on the following lemma.
- In the other case, b is not divided by 2 contrary to intuition.

Technical Lemma

Lemma (Midpoint)

Let $m=g+\frac{\mathrm{ulp}(g)}{2}$ with $g \in \mathbb{F}, m>0$ and $0<e \leq \frac{\mathrm{ulp}(g)}{2}$.

- $m \ominus e=g$
- $m \oplus e=\operatorname{succ}(g)$

Outline

(1) Radix-2 Average Algorithms
(2) Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm
(4) Formal Proof with Coq and Flocq
(5) Conclusion

Formal Proof Software

- The Coq proof assistant
- Floating-Point numbers library: Flocq (Boldo-Melquiond), which provides an FP numbers formalization and many results.
- There are several FP formats in Flocq, defined as subsets of reals numbers \mathbb{R}. All formats depend on a radix (β).
- FLX: unbounded exponent range.
- FLT: exponent has a minimal value (gradual underflow).

Format	Parameters	Constraints
FLX	β, p	$\|m\|<\beta^{p}$
FLT	$\beta, p, e_{\text {min }}$	$\|m\|<\beta^{p}, e \geq e_{\text {min }}$

A real number is a FP number if equal to $m \times \beta^{e}$

Definition of the Algorithm

We define our algorithm in Coq:

```
Definition average10 (x y : R) :=
    if (Req_bool (round (x/2 - round (x/2))) 0)
    then round (y/2 + round (x/2))
    else round (x/2 + y).
```

We assume that this function is called with the output of TwoSum.

Main Theorem

This is the main theorem, stating the correctness of the algorithm:
Theorem average10_correct :
forall a b, format $a \rightarrow$ format $b \rightarrow$
Rabs b <= (ulp a) / $2 \rightarrow$ average10 a b = round $((a+b) / 2)$.

- format x means that $x \in \mathbb{F}$. We define it depending on the chosen format.
- round x is $O(x)$. It also depends on the format, and is a rounding to nearest, with an arbitrary tie.

Main Theorem

This is the main theorem, stating the correctness of the algorithm:
Theorem average10_correct :

```
    forall a b, format a }->\mathrm{ format b }
    Rabs b <= (ulp a) / 2 
    average10 a b = round ((a + b) / 2).
```

- format x means that $x \in \mathbb{F}$. We define it depending on the chosen format.
- round x is $\circ(x)$. It also depends on the format, and is a rounding to nearest, with an arbitrary tie.
- ulp x is ulp (x).

Proofs and Generalizations

```
1 Function Average \(10(x, y)\)
    \((a, b)=\operatorname{TwoSum}(x, y)\)
    if \(\circ(a \times 0.5-(a \oslash 2))=0\) then
    return \(\circ(b \times 0.5+(a \oslash 2))\)
        else
    return \(\circ(a \times 0.5+b)\)
```

- We first prove it with an unbounded exponent range (FLX).
- We then prove that it holds with gradual underflow (FLT).
- The test $\circ(a \times 0.5-(a \oslash 2))=0$ is not equivalent to $a / 2 \in \mathbb{F}$.
- In the else case, one must compute $\circ(a \times 0.5+b)$, instead of $\circ(a \times 0.5+b \oslash 2)$ (both would work in FLX).
- We generalize it for any even radix.

Outline

(1) Radix-2 Average Algorithms
(2) Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm
(4) Formal Proof with Coq and Flocq
(5) Conclusion

Conclusion

- Summary:
- The algorithm computes the correct rounding (to nearest) of the average of two FP numbers: $\circ((a+b) / 2)$.
- It holds with gradual underflow.
- It holds with any tie-breaking rule.
- It is formally-proved.
- It has been generalized to any even radix.
- We have problems with spurious overflows (due to TwoSum).

Conclusion

- Summary:
- The algorithm computes the correct rounding (to nearest) of the average of two FP numbers: $\circ((a+b) / 2)$.
- It holds with gradual underflow.
- It holds with any tie-breaking rule.
- It is formally-proved.
- It has been generalized to any even radix.
- We have problems with spurious overflows (due to TwoSum).
- We showed that it may not be straightforward to adapt some existing algorithms from radix-2 literature to radix-10.

