A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Sylvie Boldo, Florian Faissole, and Vincent Tourneur¹

ARITH-25 - June 26th

¹Thanks to the IEEE for the student travel award.

Introduction

- FP arithmetic: IEEE-754.
- IEEE-754 2008 revision adds radix-10 formats (decimal32, decimal64).
- Many algorithms designed for radix-2 FP numbers are not valid anymore.

Goal: Adapt an existing algorithm from radix-2 FP numbers literature to radix-10.

Average of two FP numbers

Compute the correct rounding of the average of two FP numbers:

$$\circ \left(\frac{a+b}{2}\right)$$
 with \circ a rounding to nearest

with as few tests as possible.

Outline

- Radix-2 Average Algorithms
- 2 Unsuccessful Radix-10 Average Algorithm
- 3 Radix-10 Average Algorithm
- Formal Proof with Coq and Flocq
- Conclusion

Outline

- Radix-2 Average Algorithms
- 2 Unsuccessful Radix-10 Average Algorithm
- Radix-10 Average Algorithm
- 4 Formal Proof with Coq and Floco
- Conclusion

FP Average in Radix 2

- Studied by Sterbenz (1974):
 - $(a \oplus b) \oslash 2$: accurate, but may overflow when a and b share the same sign.
 - $(a \oslash 2) \oplus (b \oslash 2)$: accurate, except when underflow.
 - $a \oplus ((b \ominus a) \oslash 2)$: less accurate, but does not overflow. when a and b share the same sign
- A corresponding algorithm has been proved by Boldo to guarantee accuracy. This is a long program, since a full sign study is required to choose the correct formula.

FP Average in Radix 2

- Studied by Sterbenz (1974):
 - $(a \oplus b) \oslash 2$: accurate, but may overflow when a and b share the same sign.
 - $(a \oslash 2) \oplus (b \oslash 2)$: accurate, except when underflow.
 - a ⊕ ((b ⊖ a) Ø 2): less accurate, but does not overflow. when a
 and b share the same sign
- A corresponding algorithm has been proved by Boldo to guarantee accuracy. This is a long program, since a full sign study is required to choose the correct formula.

Correctly-Rounded Radix-2 Algorithm

A simpler algorithm that computes the **correctly-rounded** average is formally proved by Boldo (2015). Using radix-2 binary64 FP numbers:

```
double average(double C, double x, double y) {
  if (C <= abs(x))
    return x/2+y/2;
  else
    return (x+y)/2;
}</pre>
```

C is a constant that can be chosen between 2^{-967} and 2^{970} .

Dividing FP numbers by 2

- In radix 2, dividing by 2 is exact (except when underflow).
- In radix 10, there are 2 different cases:
 - If the mantissa is even or small: the result is exact.
 - Otherwise, the mantissa is odd and the result is a midpoint.

Outline

- Radix-2 Average Algorithms
- 2 Unsuccessful Radix-10 Average Algorithm
- 3 Radix-10 Average Algorithm
- 4 Formal Proof with Coq and Floco
- Conclusion

Radix-10 FP Numbers Format

In this section, we use the following FP format:

- Radix: 10.
- Mantissa size: 4 digits.
- Unbounded exponent range.
- Rounding to nearest, tie-breaking to even.

Algorithms based on (a+b)/2

Algorithm: $(a \oplus b) \oslash 2$

Counter-example of correct rounding:

$$a = 3001 \times 10^{10}, b = 1000 \times 10^{0}$$

a/2 is a midpoint, but b is positive, so the rounding should have been towards $+\infty$.

Algorithms based on (a+b)/2

Algorithm: $(a \oplus b) \oslash 2$

Counter-example of correct rounding:

$$a = 3001 \times 10^{10}, b = 1000 \times 10^{0}$$

а	3001
Ь	1000
a+b	30010000001
$a \oplus b$	3001
$(a \oplus b)/2$	15005
$(a \oplus b) \oslash 2$	1500
(a+b)/2	150050000005

a/2 is a midpoint, but b is positive, so the rounding should have been towards $+\infty$.

Algorithms based on (a + b)/2

Algorithm: $(a \oplus b) \oslash 2$

Counter-example of correct rounding:

$$a = 3001 \times 10^{10}, b = 1000 \times 10^{0}$$

а	3001
Ь	1000
$\overline{a+b}$	3001 0000 001
$a \oplus b$	3001
$(a \oplus b)/2$	15005
$(a \oplus b) \oslash 2$	1500
(a+b)/2	1500 5000 0005
$\circ ((a+b)/2)$	1501

a/2 is a midpoint, but b is positive, so the rounding should have been towards $+\infty$.

Algorithms based on (a/2) + (b/2)

Algorithm: $(a \oslash 2) \oplus (b \oslash 2)$

Counter-example of correct rounding: (same)

$$a = 3001 \times 10^{10}, b = 1000 \times 10^{0}$$

Same issue, a/2 is a midpoint, and is rounded before taking into account the value of b.

Algorithms based on (a/2) + (b/2)

Algorithm: $(a \oslash 2) \oplus (b \oslash 2)$

Counter-example of correct rounding: (same)

$$a = 3001 \times 10^{10}, b = 1000 \times 10^{0}$$

а	3001
Ь	1000
a/2	1500 5
a ⊘ 2	1500
b/2	5000
$(a \oslash 2) + (b \oslash 2)$	1500 0000 0005
$(a \oslash 2) \oplus (b \oslash 2)$	1500
(a + b)/2	1500 5000 0005

Same issue, a/2 is a midpoint, and is rounded before taking into account the value of b.

Algorithms based on (a/2) + (b/2)

Algorithm: $(a \oslash 2) \oplus (b \oslash 2)$

Counter-example of correct rounding: (same)

$$a = 3001 \times 10^{10}, b = 1000 \times 10^{0}$$

а	3001
Ь	1000
a/2	1500 <mark>5</mark>
a ⊘ 2	1500
b/2	5000
$(a \oslash 2) + (b \oslash 2)$	1500 0000 0005
$(a \oslash 2) \oplus (b \oslash 2)$	1500
(a+b)/2	1500 5000 0005
\circ ((a+b)/2)	1501

Same issue, a/2 is a midpoint, and is rounded before taking into account the value of b.

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: \circ ($a \times 0.5 + (b \oslash 2)$) There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding

$$a = 2001 \times 10^{10}, b = 2001 \times 10^{8}$$

o((a+b)/2) 1011

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: $\circ(a \times 0.5 + (b \oslash 2))$

There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding:

$$a = 2001 \times 10^{10}, b = 2001 \times 10^{8}$$

а	2001
Ь	2001
b/2	10005
<i>b</i> ⊘ 2	1000
a × 0.5	10005
$a \times 0.5 + (b \oslash 2)$	10105
\circ (a × 0.5 + (b \oslash 2))	1010
(a+b)/2	1010505

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: $\circ(a \times 0.5 + (b \oslash 2))$

There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding:

$$a = 2001 \times 10^{10}, b = 2001 \times 10^{8}$$

а	2001
b	2001
b/2	10005
<i>b</i> ⊘ 2	1000
a × 0.5	10005
$a \times 0.5 + (b \oslash 2)$	10105
\circ (a × 0.5 + (b \oslash 2))	1010
(a+b)/2	1010 505
$\circ ((a+b)/2)$	1011

Outline

- Radix-2 Average Algorithms
- 2 Unsuccessful Radix-10 Average Algorithm
- 3 Radix-10 Average Algorithm
- 4 Formal Proof with Coq and Floco
- Conclusion

TwoSum

TwoSum (x, y) computes (with 6 flops) the sum of x and y, and the rounding error. It works in radix-10 and returns the rounding and the error of an FP addition (always representable exactly by an FP number).

$$(a, b) = \mathsf{TwoSum}(x, y) \implies$$

$$x + y = a + b$$
 \wedge $|b| \leq \frac{\mathsf{ulp}(a)}{2}$

```
Function Average10(x, y)
(a, b) = \text{TwoSum}(x, y)
if \circ (a \times 0.5 - (a \otimes 2)) = 0 \text{ then}
| \text{ return } \circ (b \times 0.5 + (a \otimes 2))
else
| \text{ return } \circ (a \times 0.5 + b)
```

- The if checks whether a/2 is a FP number.
- If $a/2 \in \mathbb{F}$, we have $a \oslash 2 = a/2$. So the computations of line 4 are exact until the last rounding.
- In the other case, a/2 is a midpoint and we rely on the following lemma.
- In the other case, b is not divided by 2 contrary to intuition

```
Function Average10(x, y)
(a, b) = \text{TwoSum}(x, y)
if \circ (a \times 0.5 - (a \otimes 2)) = 0 \text{ then}
| \text{ return } \circ (b \times 0.5 + (a \otimes 2))
else
| \text{ return } \circ (a \times 0.5 + b)
```

- The if checks whether a/2 is a FP number.
- If $a/2 \in \mathbb{F}$, we have $a \oslash 2 = a/2$. So the computations of line 4 are exact until the last rounding.
- In the other case, a/2 is a midpoint and we rely on the following lemma.
- In the other case, b is not divided by 2 contrary to intuition

```
Function Average10(x, y)
(a, b) = \text{TwoSum}(x, y)
if \circ (a \times 0.5 - (a \otimes 2)) = 0 \text{ then}
| \text{ return } \circ (b \times 0.5 + (a \otimes 2))
else
| \text{ return } \circ (a \times 0.5 + b)
```

- The if checks whether a/2 is a FP number.
- If $a/2 \in \mathbb{F}$, we have $a \oslash 2 = a/2$. So the computations of line 4 are exact until the last rounding.
- In the other case, a/2 is a midpoint and we rely on the following lemma.
- In the other case, b is not divided by 2 contrary to intuition.

```
Function Average10(x, y)
(a, b) = \text{TwoSum}(x, y)
if \circ (a \times 0.5 - (a \otimes 2)) = 0 \text{ then}
| \text{ return } \circ (b \times 0.5 + (a \otimes 2))
else
| \text{ return } \circ (a \times 0.5 + b)
```

- The if checks whether a/2 is a FP number.
- If $a/2 \in \mathbb{F}$, we have $a \oslash 2 = a/2$. So the computations of line 4 are exact until the last rounding.
- In the other case, a/2 is a midpoint and we rely on the following lemma.
- In the other case, b is not divided by 2 contrary to intuition

```
Function Average10(x, y)
(a, b) = \text{TwoSum}(x, y)
if \circ (a \times 0.5 - (a \otimes 2)) = 0 \text{ then}
| \text{ return } \circ (b \times 0.5 + (a \otimes 2))
else
| \text{ return } \circ (a \times 0.5 + b)
```

- The if checks whether a/2 is a FP number.
- If $a/2 \in \mathbb{F}$, we have $a \oslash 2 = a/2$. So the computations of line 4 are exact until the last rounding.
- In the other case, a/2 is a midpoint and we rely on the following lemma.
- In the other case, b is not divided by 2 contrary to intuition.

Technical Lemma

Lemma (Midpoint)

Let
$$m = g + \frac{\mathsf{ulp}\,(g)}{2}$$
 with $g \in \mathbb{F}$, $m > 0$ and $0 < e \le \frac{\mathsf{ulp}\,(g)}{2}$.

- $m \ominus e = g$
- $m \oplus e = \operatorname{succ}(g)$

Outline

- Radix-2 Average Algorithms
- 2 Unsuccessful Radix-10 Average Algorithm
- 3 Radix-10 Average Algorithm
- 4 Formal Proof with Coq and Flocq
- Conclusion

Formal Proof Software

- The Coq proof assistant
- Floating-Point numbers library: Flocq (Boldo-Melquiond),
 which provides an FP numbers formalization and many results.
- There are several FP formats in Flocq, defined as subsets of reals numbers \mathbb{R} . All formats depend on a radix (β) .
 - FLX: unbounded exponent range.
 - FLT: exponent has a minimal value (gradual underflow).

Format	Parameters	Constraints
FLX	$eta, { entbf{ entite}p}$	$ m < \beta^p$
FLT	eta, p, e_{min}	$ m < \beta^p$, $e \ge e_{min}$

A real number is a FP number if equal to $m \times \beta^e$

Definition of the Algorithm

We define our algorithm in Coq:

```
Definition average10 (x y : R) :=
if (Req_bool (round (x/2 - round (x/2))) 0)
then round (y/2 + round (x/2))
else round (x/2 + y).
```

We assume that this function is called with the output of TwoSum.

Main Theorem

This is the main theorem, stating the correctness of the algorithm:

```
Theorem average10_correct: forall a b, format a \rightarrow format b \rightarrow Rabs b <= (ulp a) / 2 \rightarrow average10 a b = round ((a + b) / 2).
```

- format x means that $x \in \mathbb{F}$. We define it depending on the chosen format.
- round x is $\circ(x)$. It also depends on the format, and is a rounding to nearest, with an arbitrary tie.
- ulp x is ulp (x)

Main Theorem

This is the main theorem, stating the correctness of the algorithm:

```
Theorem average10_correct: forall a b, format a \rightarrow format b \rightarrow Rabs b <= (ulp a) / 2 \rightarrow average10 a b = round ((a + b) / 2).
```

- format x means that $x \in \mathbb{F}$. We define it depending on the chosen format.
- round x is $\circ(x)$. It also depends on the format, and is a rounding to nearest, with an arbitrary tie.
- ulp x is ulp(x).

Proofs and Generalizations

```
Function Average10(x, y)

(a, b) = TwoSum(x, y)

if \circ(a \times 0.5 - (a \oslash 2)) = 0 then

return \circ(b \times 0.5 + (a \oslash 2))

else

return \circ(a \times 0.5 + b)
```

- We first prove it with an unbounded exponent range (FLX).
- We then prove that it holds with gradual underflow (FLT).
 - The test $\circ (a \times 0.5 (a \oslash 2)) = 0$ is not equivalent to $a/2 \in \mathbb{F}$.
 - In the else case, one must compute \circ ($a \times 0.5 + b$), instead of \circ ($a \times 0.5 + b \otimes 2$) (both would work in FLX).
- We generalize it for any even radix.

Outline

- Radix-2 Average Algorithms
- 2 Unsuccessful Radix-10 Average Algorithm
- Radix-10 Average Algorithm
- 4 Formal Proof with Coq and Floco
- Conclusion

Conclusion

- Summary:
 - The algorithm computes the correct rounding (to nearest) of the average of two FP numbers: $\circ ((a+b)/2)$.
 - It holds with gradual underflow.
 - It holds with any tie-breaking rule.
 - It is formally-proved.
 - It has been generalized to any even radix.
- We have problems with spurious overflows (due to TwoSum).

 We showed that it may not be straightforward to adapt some existing algorithms from radix-2 literature to radix-10.

Conclusion

- Summary:
 - The algorithm computes the correct rounding (to nearest) of the average of two FP numbers: $\circ ((a+b)/2)$.
 - It holds with gradual underflow.
 - It holds with any tie-breaking rule.
 - It is formally-proved.
 - It has been generalized to any even radix.
- We have problems with spurious overflows (due to TwoSum).

• We showed that it may not be straightforward to adapt some existing algorithms from radix-2 literature to radix-10.